from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F import hnswlib import gradio as gr import numpy as np seperator = "-HFSEP-" base_name="intfloat/e5-large-v2" device="cuda" max_length=512 tokenizer = AutoTokenizer.from_pretrained(base_name) model = AutoModel.from_pretrained(base_name).to(device) def get_embeddings(input_texts): batch_dict = tokenizer( input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt' ).to(device) with torch.no_grad(): outputs = model(**batch_dict) embeddings = _average_pool( outputs.last_hidden_state, batch_dict['attention_mask'] ) embeddings = F.normalize(embeddings, p=2, dim=1) embeddings_np = embeddings.cpu().numpy() if device == "cuda": del embeddings torch.cuda.empty_cache() return embeddings_np def _average_pool( last_hidden_states, attention_mask ): last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] def create_hnsw_index(embeddings_np, space='ip', ef_construction=100, M=16): index = hnswlib.Index(space=space, dim=len(embeddings_np[0])) index.init_index(max_elements=len(embeddings_np), ef_construction=ef_construction, M=M) ids = np.arange(embeddings_np.shape[0]) index.add_items(embeddings_np, ids) return index def gradio_function(query, paragraph_chunks, top_k): paragraph_chunks = paragraph_chunks.split(seperator) # Split the comma-separated values into a list paragraph_chunks = [item.strip() for item in paragraph_chunks] # Trim whitespace from each item print("creating embeddings") embeddings_np = get_embeddings([query]+paragraph_chunks) query_embedding, chunks_embeddings = embeddings_np[0], embeddings_np[1:] print("creating index") search_index = create_hnsw_index(chunks_embeddings) print("searching index") labels, _ = search_index.knn_query(query_embedding, k=min(int(top_k), len(chunks_embeddings))) return f"The closes labels are: {labels}" interface = gr.Interface( fn=gradio_function, inputs=[ gr.Textbox(placeholder="Enter a user query..."), gr.Textbox(placeholder="Enter comma-separated strings..."), gr.Number() ], outputs="text" ) interface.launch()