File size: 7,606 Bytes
979b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4862fe9
979b9ef
 
 
 
 
 
 
 
 
959bfe3
979b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502e622
979b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959bfe3
979b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 14 10:35:25 2022

@author: mritchey
"""
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\ERA\ERA2.py"
import datetime
import glob
import os
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from matplotlib import colors as colors
from streamlit_folium import st_folium
import rioxarray
import xarray as xr
import cdsapi
import os



def mapvalue2color(value, cmap):
    if np.isnan(value):
        return (1, 0, 0, 0)
    else:
        return colors.to_rgba(cmap(value), 0.7)


def geocode(address):
    try:
        address2 = address.replace(' ', '+').replace(',', '%2C')
        df = pd.read_json(
            f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
        results = df.iloc[:1, 0][0][0]['coordinates']
        lat, lon = results['y'], results['x']
    except:
        geolocator = Nominatim(user_agent="GTA Lookup")
        geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
        location = geolocator.geocode(address)
        lat, lon = location.latitude, location.longitude
    return lat, lon


def graph_within_date_range(d, number_days_range):
    year, month, day = d[:4], d[4:6], d[6:8]
    date = pd.Timestamp(d)
    start_date, end_date = date - \
        pd.Timedelta(days=number_days_range), date + \
        pd.Timedelta(days=number_days_range+1)
    start_date = start_date.strftime("%Y-%m-%d")
    end_date = end_date.strftime("%Y-%m-%d")
    url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,wind_gusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
    df = pd.read_json(url).reset_index()
    data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
    data['time'] = pd.to_datetime(data['time'])
    data['date'] = pd.to_datetime(data['time'].dt.date)
    data = data.query("temperature_2m==temperature_2m")

    data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
                                           'precipitation': ['sum'],
                                           'windspeed_10m': ['min', 'mean', 'max'],
                                           'wind_gusts_10m': ['min', 'mean', 'max']
                                           })
    data_agg.columns = data_agg.columns.to_series().str.join('_')
    data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
    return data.drop(columns=['date']), data_agg


@st.cache(allow_output_mutation=True)
def get_era5_data(year, month, day):
    c = cdsapi.Client(key=os.environ['key'],
                      url="https://cds.climate.copernicus.eu/api/v2")

    c.retrieve(
        'reanalysis-era5-single-levels',
        {
            'product_type': 'reanalysis',
            'variable': ['10m_u_component_of_wind', '10m_v_component_of_wind',
                            'instantaneous_10m_wind_gust',
                            '2m_temperature', 'total_precipitation'],
            'year': year,
            'month': [month],
            'day': [day],
            'time': ['00:00', '06:00', '12:00', '18:00'],
            'area': [49.5, -125, 24.5, -66.5, ],
            'format': 'netcdf',
        },
        'data.nc')


@st.cache
def convert_df(df):
    return df.to_csv(index=0).encode('utf-8')


try:
    for i in glob.glob('*.grib2'):
        os.remove(i)
except:
    pass

st.set_page_config(layout="wide")
col1, col2 = st.columns((2))

address = st.sidebar.text_input(
    "Address", "1000 Main St, Cincinnati, OH 45202")
date = st.sidebar.date_input(
    "Date",  pd.Timestamp(2022, 9, 28))
d = date.strftime('%Y%m%d')
date = date.strftime('%Y-%m-%d')
time = st.sidebar.selectbox('Time (UTC):', ('12 AM', '6 AM', '12 PM', '6 PM',))
type_var = st.sidebar.selectbox(
    'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
number_days_range = st.sidebar.selectbox(
    'Within Day Range:', (5, 10, 30, 90, 180))
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))

# Keys
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
           'Temp': 't2m', 'Precipitation': 'tp'}

variable = var_key[type_var]

unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
            'Temp': 'F', 'Precipitation': 'In.'}
unit = unit_key[type_var]

cols_key = {'Gust': ['wind_gusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
            'Precipitation': ['precipitation']}

cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
                         'windgusts_10m_max'],
                'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
                         'windspeed_10m_max'],
                'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
                'Precipitation': ['precipitation_sum']}

if hourly_daily == 'Hourly':
    cols = cols_key[type_var]
else:
    cols = cols_key_agg[type_var]


if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
    t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
    t = '00:00'
else:
    t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'

year, month, day = d[:4], d[4:6], d[6:8]

get_era5_data(year, month, day)
ds = xr.open_dataset('data.nc')
ds = ds.sel(time=f'{date}T{t}').drop('time')

#Convert Units
ds = ds.assign(t2m=(ds.t2m - 273.15) * 9/5 + 32)
ds = ds.assign(i10fg=(ds.i10fg*2.237))
ds = ds.assign(tp=(ds.tp/24.5))
ds = ds.assign(wind10=((ds.v10**2+ds.u10**2)**.5)*2.237)

lat, lon = geocode(address)

var_value = ds[variable].sel(
    longitude=lon, latitude=lat, method="nearest").values.item()
var_value = round(var_value, 1)

img = ds[variable].values
boundary = ds.rio.bounds()
left, bottom, right, top = boundary

img[img < 0.0] = np.nan

clat = (bottom + top)/2
clon = (left + right)/2

vmin = np.floor(np.nanmin(img))
vmax = np.ceil(np.nanmax(img))

colormap = cm.LinearColormap(
    colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)

m = folium.Map(location=[lat, lon],  zoom_start=5, height=500)

folium.Marker(
    location=[lat, lon],
    popup=f"{var_value} {unit}"
).add_to(m)

folium.raster_layers.ImageOverlay(
    image=img,
    name='Wind Speed Map',
    opacity=.8,
    bounds=[[bottom, left], [top, right]],
    colormap=lambda value: mapvalue2color(value, colormap)
).add_to(m)


folium.LayerControl().add_to(m)
colormap.caption = 'Wind Speed: MPH'
m.add_child(colormap)

with col1:
    st.title('ERA5 Model')
    # st.write(
    #     f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
    st_folium(m, height=500)
    df_all, df_all_agg = graph_within_date_range(d, number_days_range)

    if hourly_daily == 'Hourly':
        fig = px.line(df_all, x="time", y=cols)
        df_downloald = df_all
    else:
        fig = px.line(df_all_agg.reset_index(), x="date", y=cols)
        df_downloald = df_all_agg.reset_index()

with col2:
    st.title('Analysis')
    st.plotly_chart(fig)

    csv = convert_df(df_downloald)

    st.download_button(
        label="Download data as CSV",
        data=csv,
        file_name=f'{d}.csv',
        mime='text/csv')


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)