Spaces:
Running
Running
File size: 7,606 Bytes
979b9ef 4862fe9 979b9ef 959bfe3 979b9ef 502e622 979b9ef 959bfe3 979b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 14 10:35:25 2022
@author: mritchey
"""
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\ERA\ERA2.py"
import datetime
import glob
import os
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from matplotlib import colors as colors
from streamlit_folium import st_folium
import rioxarray
import xarray as xr
import cdsapi
import os
def mapvalue2color(value, cmap):
if np.isnan(value):
return (1, 0, 0, 0)
else:
return colors.to_rgba(cmap(value), 0.7)
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def graph_within_date_range(d, number_days_range):
year, month, day = d[:4], d[4:6], d[6:8]
date = pd.Timestamp(d)
start_date, end_date = date - \
pd.Timedelta(days=number_days_range), date + \
pd.Timedelta(days=number_days_range+1)
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,wind_gusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
df = pd.read_json(url).reset_index()
data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
data['time'] = pd.to_datetime(data['time'])
data['date'] = pd.to_datetime(data['time'].dt.date)
data = data.query("temperature_2m==temperature_2m")
data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
'precipitation': ['sum'],
'windspeed_10m': ['min', 'mean', 'max'],
'wind_gusts_10m': ['min', 'mean', 'max']
})
data_agg.columns = data_agg.columns.to_series().str.join('_')
data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
return data.drop(columns=['date']), data_agg
@st.cache(allow_output_mutation=True)
def get_era5_data(year, month, day):
c = cdsapi.Client(key=os.environ['key'],
url="https://cds.climate.copernicus.eu/api/v2")
c.retrieve(
'reanalysis-era5-single-levels',
{
'product_type': 'reanalysis',
'variable': ['10m_u_component_of_wind', '10m_v_component_of_wind',
'instantaneous_10m_wind_gust',
'2m_temperature', 'total_precipitation'],
'year': year,
'month': [month],
'day': [day],
'time': ['00:00', '06:00', '12:00', '18:00'],
'area': [49.5, -125, 24.5, -66.5, ],
'format': 'netcdf',
},
'data.nc')
@st.cache
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
try:
for i in glob.glob('*.grib2'):
os.remove(i)
except:
pass
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
address = st.sidebar.text_input(
"Address", "1000 Main St, Cincinnati, OH 45202")
date = st.sidebar.date_input(
"Date", pd.Timestamp(2022, 9, 28))
d = date.strftime('%Y%m%d')
date = date.strftime('%Y-%m-%d')
time = st.sidebar.selectbox('Time (UTC):', ('12 AM', '6 AM', '12 PM', '6 PM',))
type_var = st.sidebar.selectbox(
'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
number_days_range = st.sidebar.selectbox(
'Within Day Range:', (5, 10, 30, 90, 180))
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))
# Keys
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
'Temp': 't2m', 'Precipitation': 'tp'}
variable = var_key[type_var]
unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
'Temp': 'F', 'Precipitation': 'In.'}
unit = unit_key[type_var]
cols_key = {'Gust': ['wind_gusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
'Precipitation': ['precipitation']}
cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
'windgusts_10m_max'],
'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
'windspeed_10m_max'],
'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
'Precipitation': ['precipitation_sum']}
if hourly_daily == 'Hourly':
cols = cols_key[type_var]
else:
cols = cols_key_agg[type_var]
if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
t = '00:00'
else:
t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
year, month, day = d[:4], d[4:6], d[6:8]
get_era5_data(year, month, day)
ds = xr.open_dataset('data.nc')
ds = ds.sel(time=f'{date}T{t}').drop('time')
#Convert Units
ds = ds.assign(t2m=(ds.t2m - 273.15) * 9/5 + 32)
ds = ds.assign(i10fg=(ds.i10fg*2.237))
ds = ds.assign(tp=(ds.tp/24.5))
ds = ds.assign(wind10=((ds.v10**2+ds.u10**2)**.5)*2.237)
lat, lon = geocode(address)
var_value = ds[variable].sel(
longitude=lon, latitude=lat, method="nearest").values.item()
var_value = round(var_value, 1)
img = ds[variable].values
boundary = ds.rio.bounds()
left, bottom, right, top = boundary
img[img < 0.0] = np.nan
clat = (bottom + top)/2
clon = (left + right)/2
vmin = np.floor(np.nanmin(img))
vmax = np.ceil(np.nanmax(img))
colormap = cm.LinearColormap(
colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
m = folium.Map(location=[lat, lon], zoom_start=5, height=500)
folium.Marker(
location=[lat, lon],
popup=f"{var_value} {unit}"
).add_to(m)
folium.raster_layers.ImageOverlay(
image=img,
name='Wind Speed Map',
opacity=.8,
bounds=[[bottom, left], [top, right]],
colormap=lambda value: mapvalue2color(value, colormap)
).add_to(m)
folium.LayerControl().add_to(m)
colormap.caption = 'Wind Speed: MPH'
m.add_child(colormap)
with col1:
st.title('ERA5 Model')
# st.write(
# f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
st_folium(m, height=500)
df_all, df_all_agg = graph_within_date_range(d, number_days_range)
if hourly_daily == 'Hourly':
fig = px.line(df_all, x="time", y=cols)
df_downloald = df_all
else:
fig = px.line(df_all_agg.reset_index(), x="date", y=cols)
df_downloald = df_all_agg.reset_index()
with col2:
st.title('Analysis')
st.plotly_chart(fig)
csv = convert_df(df_downloald)
st.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{d}.csv',
mime='text/csv')
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|