import streamlit as st import pandas as pd import numpy as np import plotly.express as px import folium from streamlit_folium import st_folium # ---------------------------------------------------- # 1. Load data # ---------------------------------------------------- @st.cache_data def load_data(): # Load daily and monthly CSV from local files (or a URL if needed) daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"]) monthly_df = pd.read_csv("monthly_data_2013_2024.csv") # If monthly_df also needs a 'date' column for plotting (like first day of month), you can create: # monthly_df["date"] = pd.to_datetime(monthly_df["year"].astype(str) + "-" + monthly_df["month"].astype(str) + "-01") return daily_df, monthly_df daily_data, monthly_data = load_data() # Pre-define your location dictionary so we can map lat/lon LOCATIONS = { "Karagwe": {"lat": -1.7718, "lon": 30.9876}, "Masasi": {"lat": -10.7167, "lon": 38.8000}, "Igunga": {"lat": -4.2833, "lon": 33.8833} } # ---------------------------------------------------- # 2. Streamlit UI Layout # ---------------------------------------------------- st.title("Malaria & Dengue Outbreak Analysis (2013–2024)") st.sidebar.header("Filters & Options") # Choose disease type to focus on disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"]) # Choose data granularity data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"]) # Let user filter location(s) location_list = list(LOCATIONS.keys()) selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list) # For monthly data, let user select a year range if data_choice == "Monthly": year_min = int(monthly_data["year"].min()) year_max = int(monthly_data["year"].max()) year_range = st.sidebar.slider("Select Year Range", min_value=year_min, max_value=year_max, value=(year_min, year_max)) # For daily data, let user select a date range else: date_min = daily_data["date"].min() date_max = daily_data["date"].max() date_range = st.sidebar.date_input("Select Date Range", [date_min, date_max], min_value=date_min, max_value=date_max) # ---------------------------------------------------- # 3. Filter data based on user input # ---------------------------------------------------- if data_choice == "Monthly": # Subset monthly data for selected locations df = monthly_data[monthly_data["location"].isin(selected_locations)].copy() # Filter year range df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])] # Create a "date" column for monthly plotting (1st of each month) # This can help create a time-series for Plotly df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01") else: # Subset daily data df = daily_data[daily_data["location"].isin(selected_locations)].copy() # Filter date range df = df[(df["date"] >= pd.to_datetime(date_range[0])) & (df["date"] <= pd.to_datetime(date_range[1]))] # ---------------------------------------------------- # 4. Interactive Plotly Time-Series # ---------------------------------------------------- st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters") # Decide which columns are relevant risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk" if data_choice == "Monthly": # We'll plot a line chart of risk, temperature, and rainfall vs. date fig = px.line(df, x="date", y=risk_col, color="location", title=f"{disease_choice} Risk Over Time ({data_choice})") fig.update_layout(yaxis_title="Risk (0–1)") st.plotly_chart(fig, use_container_width=True) # Optionally plot temperature / rainfall on another figure col1, col2 = st.columns(2) with col1: fig_temp = px.line(df, x="date", y="temp_avg", color="location", title="Average Temperature (°C)") st.plotly_chart(fig_temp, use_container_width=True) with col2: # 'monthly_rainfall_mm' is total monthly rainfall fig_rain = px.line(df, x="date", y="monthly_rainfall_mm", color="location", title="Monthly Rainfall (mm)") st.plotly_chart(fig_rain, use_container_width=True) # Show outbreak flags if focusing on monthly if disease_choice == "Malaria": flag_col = "malaria_outbreak" else: flag_col = "dengue_outbreak" outbreak_months = df[df[flag_col] == True] if not outbreak_months.empty: st.write(f"**Months with likely {disease_choice} outbreak:**") st.dataframe(outbreak_months[["location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col]]) else: st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.") else: # For daily data, plot daily risk fig = px.line(df, x="date", y=risk_col, color="location", title=f"{disease_choice} Daily Risk Over Time (2013–2024)") fig.update_layout(yaxis_title="Risk (0–1)") st.plotly_chart(fig, use_container_width=True) # Similarly, temperature & daily rainfall col1, col2 = st.columns(2) with col1: fig_temp = px.line(df, x="date", y="temp_avg", color="location", title="Daily Avg Temperature (°C)") st.plotly_chart(fig_temp, use_container_width=True) with col2: fig_rain = px.line(df, x="date", y="daily_rainfall_mm", color="location", title="Daily Rainfall (mm)") st.plotly_chart(fig_rain, use_container_width=True) # ---------------------------------------------------- # 5. Correlation Heatmap # ---------------------------------------------------- st.subheader(f"Correlation Heatmap - {data_choice} Data") # We'll pick relevant numeric columns if data_choice == "Monthly": subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"] else: subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"] corr_df = df[subset_cols].corr() fig_corr = px.imshow(corr_df, text_auto=True, aspect="auto", title="Correlation Matrix of Weather & Risk") st.plotly_chart(fig_corr, use_container_width=True) # ---------------------------------------------------- # 6. Interactive Map (Folium) # ---------------------------------------------------- st.subheader("Interactive Map") st.markdown( """ **Note**: We only have 3 locations. Each marker popup shows some aggregated stats for the displayed data range. """ ) # Create a base map centered roughly in Tanzania m = folium.Map(location=[-6.0, 35.0], zoom_start=6) # We'll show monthly or daily aggregates in the popups if data_choice == "Monthly": # For each location, let's gather monthly avg for the current df # Then we can show a simple summary in the popup for loc in selected_locations: loc_info = LOCATIONS[loc] loc_df = df[df["location"] == loc] if loc_df.empty: continue # Basic stats: average risk, average rainfall, etc avg_risk = loc_df[risk_col].mean() avg_temp = loc_df["temp_avg"].mean() avg_rain = loc_df["monthly_rainfall_mm"].mean() # Build popup HTML popup_html = f""" {loc}
Disease: {disease_choice}
Avg Risk (in selection): {avg_risk:.2f}
Avg Temp (°C): {avg_temp:.2f}
Avg Rainfall (mm): {avg_rain:.2f}
""" folium.Marker( location=[loc_info["lat"], loc_info["lon"]], popup=popup_html, tooltip=f"{loc} ({disease_choice})" ).add_to(m) else: # Daily data for loc in selected_locations: loc_info = LOCATIONS[loc] loc_df = df[df["location"] == loc] if loc_df.empty: continue avg_risk = loc_df[risk_col].mean() avg_temp = loc_df["temp_avg"].mean() avg_rain = loc_df["daily_rainfall_mm"].mean() popup_html = f""" {loc}
Disease: {disease_choice}
Avg Risk (in selection): {avg_risk:.2f}
Avg Temp (°C): {avg_temp:.2f}
Avg Rain (mm/day): {avg_rain:.2f}
""" folium.Marker( location=[loc_info["lat"], loc_info["lon"]], popup=popup_html, tooltip=f"{loc} ({disease_choice})" ).add_to(m) # Render Folium map in Streamlit st_data = st_folium(m, width=700, height=500)