import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objs as go
import folium
from streamlit_folium import st_folium
from datetime import timedelta
# ----------------------------------------------------
# 1. Load data
# ----------------------------------------------------
@st.cache_data
def load_data():
# Load daily and monthly CSV from local files (or a URL if needed)
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
# If monthly_df also needs a 'date' column for plotting, you can create:
# monthly_df["date"] = pd.to_datetime(monthly_df["year"].astype(str) + "-" + monthly_df["month"].astype(str) + "-01")
return daily_df, monthly_df
daily_data, monthly_data = load_data()
# Pre-define your location dictionary so we can map lat/lon
LOCATIONS = {
"Karagwe": {"lat": -1.7718, "lon": 30.9876},
"Masasi": {"lat": -10.7167, "lon": 38.8000},
"Igunga": {"lat": -4.2833, "lon": 33.8833}
}
# ----------------------------------------------------
# 2. Streamlit UI Layout
# ----------------------------------------------------
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")
st.sidebar.header("Filters & Options")
# Choose disease type to focus on
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"], index=0)
# Choose data granularity
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"], index=0)
# Let user filter location(s)
location_list = list(LOCATIONS.keys())
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)
# For monthly data, let user select a year range
if data_choice == "Monthly":
year_min = int(monthly_data["year"].min())
year_max = int(monthly_data["year"].max())
year_range = st.sidebar.slider(
"Select Year Range",
min_value=year_min,
max_value=year_max,
value=(year_min, year_max),
step=1
)
# For daily data, let user select a date range
else:
date_min = daily_data["date"].min()
date_max = daily_data["date"].max()
date_range = st.sidebar.date_input(
"Select Date Range",
[date_min, date_max],
min_value=date_min,
max_value=date_max
)
# ----------------------------------------------------
# 3. Filter data based on user input
# ----------------------------------------------------
if data_choice == "Monthly":
# Subset monthly data for selected locations
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
# Filter year range
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
# Create a "date" column for monthly plotting
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")
else:
# Subset daily data
df = daily_data[daily_data["location"].isin(selected_locations)].copy()
# Filter date range
df = df[(df["date"] >= pd.to_datetime(date_range[0])) & (df["date"] <= pd.to_datetime(date_range[1]))]
# ----------------------------------------------------
# 4. Interactive Plotly Time-Series (Original)
# ----------------------------------------------------
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")
# Decide which columns are relevant for risk
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"
if data_choice == "Monthly":
# Plot a line chart of risk vs. date
fig = px.line(
df,
x="date",
y=risk_col,
color="location",
title=f"{disease_choice} Risk Over Time ({data_choice})"
)
fig.update_layout(yaxis_title="Risk (0–1)")
st.plotly_chart(fig, use_container_width=True)
# Temperature & Rainfall side-by-side
col1, col2 = st.columns(2)
with col1:
fig_temp = px.line(
df,
x="date",
y="temp_avg",
color="location",
title="Average Temperature (°C)"
)
st.plotly_chart(fig_temp, use_container_width=True)
with col2:
# 'monthly_rainfall_mm' is total monthly rainfall
fig_rain = px.line(
df,
x="date",
y="monthly_rainfall_mm",
color="location",
title="Monthly Rainfall (mm)"
)
st.plotly_chart(fig_rain, use_container_width=True)
# Show outbreak flags if focusing on monthly
if disease_choice == "Malaria":
flag_col = "malaria_outbreak"
else:
flag_col = "dengue_outbreak"
outbreak_months = df[df[flag_col] == True]
if not outbreak_months.empty:
st.write(f"**Months with likely {disease_choice} outbreak:**")
st.dataframe(outbreak_months[[
"location","year","month","temp_avg",
"humidity","monthly_rainfall_mm",flag_col
]])
else:
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")
else:
# For daily data, plot daily risk
fig = px.line(
df,
x="date",
y=risk_col,
color="location",
title=f"{disease_choice} Daily Risk Over Time (2013–2024)"
)
fig.update_layout(yaxis_title="Risk (0–1)")
st.plotly_chart(fig, use_container_width=True)
# Temperature & Rainfall side-by-side
col1, col2 = st.columns(2)
with col1:
fig_temp = px.line(
df,
x="date",
y="temp_avg",
color="location",
title="Daily Avg Temperature (°C)"
)
st.plotly_chart(fig_temp, use_container_width=True)
with col2:
fig_rain = px.line(
df,
x="date",
y="daily_rainfall_mm",
color="location",
title="Daily Rainfall (mm)"
)
st.plotly_chart(fig_rain, use_container_width=True)
# ----------------------------------------------------
# 5. Correlation Heatmap (Original)
# ----------------------------------------------------
st.subheader(f"Correlation Heatmap - {data_choice} Data")
# Option to choose correlation method
corr_method = st.selectbox("Correlation Method", ["pearson", "spearman"], index=0)
# We'll pick relevant numeric columns
if data_choice == "Monthly":
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
else:
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]
corr_df = df[subset_cols].corr(method=corr_method)
fig_corr = px.imshow(
corr_df,
text_auto=True,
aspect="auto",
title=f"Correlation Matrix of Weather & Risk ({corr_method.capitalize()})"
)
st.plotly_chart(fig_corr, use_container_width=True)
# ----------------------------------------------------
# 6. Interactive Map (Original)
# ----------------------------------------------------
st.subheader("Interactive Map")
st.markdown(
"""
**Note**: We only have 3 locations. Each marker popup shows some aggregated
stats for the displayed data range.
"""
)
# Create a base map centered roughly in Tanzania
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)
# Show monthly or daily aggregates in the popups
if data_choice == "Monthly":
for loc in selected_locations:
loc_info = LOCATIONS[loc]
loc_df = df[df["location"] == loc]
if loc_df.empty:
continue
# Basic stats
avg_risk = loc_df[risk_col].mean()
avg_temp = loc_df["temp_avg"].mean()
avg_rain = loc_df["monthly_rainfall_mm"].mean()
# Build popup HTML
popup_html = f"""
{loc}
Disease: {disease_choice}
Avg Risk (in selection): {avg_risk:.2f}
Avg Temp (°C): {avg_temp:.2f}
Avg Rainfall (mm): {avg_rain:.2f}
"""
folium.Marker(
location=[loc_info["lat"], loc_info["lon"]],
popup=popup_html,
tooltip=f"{loc} ({disease_choice})"
).add_to(m)
else:
# Daily data
for loc in selected_locations:
loc_info = LOCATIONS[loc]
loc_df = df[df["location"] == loc]
if loc_df.empty:
continue
avg_risk = loc_df[risk_col].mean()
avg_temp = loc_df["temp_avg"].mean()
avg_rain = loc_df["daily_rainfall_mm"].mean()
popup_html = f"""
{loc}
Disease: {disease_choice}
Avg Risk (in selection): {avg_risk:.2f}
Avg Temp (°C): {avg_temp:.2f}
Avg Rain (mm/day): {avg_rain:.2f}
"""
folium.Marker(
location=[loc_info["lat"], loc_info["lon"]],
popup=popup_html,
tooltip=f"{loc} ({disease_choice})"
).add_to(m)
# Render Folium map in Streamlit
st_data = st_folium(m, width=700, height=500)
# ----------------------------------------------------
# 7. Additional Explorations (New Features)
# ----------------------------------------------------
st.header("Additional Explorations")
###############################################################################
# 7.1 Compare Malaria & Dengue Risk Side-by-Side (same chart) for the same data
###############################################################################
st.subheader("Compare Malaria & Dengue Risk Over Time")
compare_both = st.checkbox("Compare Both Diseases on One Plot")
if compare_both:
# We'll create two columns for Malaria & Dengue in the same DF subset
# Already have "malaria_risk" and "dengue_risk" in the data
# Filter the same df but plot them together:
# Convert to "long" format for easy plotting with Plotly
# e.g. columns: date, location, disease, risk
if data_choice == "Monthly":
# We have date, location, malaria_risk, dengue_risk
df_long = df.melt(
id_vars=["date","location","temp_avg","humidity"],
value_vars=["malaria_risk","dengue_risk"],
var_name="disease",
value_name="risk"
)
else:
df_long = df.melt(
id_vars=["date","location","temp_avg","humidity"],
value_vars=["malaria_risk","dengue_risk"],
var_name="disease",
value_name="risk"
)
# We only want to show locations user selected, but the df is already filtered
# so just plot:
title_str = "Malaria vs. Dengue Risk"
fig_compare = px.line(
df_long,
x="date",
y="risk",
color="location",
line_dash="disease",
title=title_str
)
fig_compare.update_layout(yaxis_title="Risk (0–1)")
st.plotly_chart(fig_compare, use_container_width=True)
##################################################
# 7.2 Scatter Matrix (Pairwise relationships)
##################################################
st.subheader("Scatter Matrix of Risk & Weather Parameters")
# Let user choose which columns to include (besides the default subset)
scatter_cols = st.multiselect(
"Choose additional columns to include in Scatter Matrix (besides risk & weather).",
["temp_avg","humidity","monthly_rainfall_mm","daily_rainfall_mm","malaria_risk","dengue_risk"],
default=["temp_avg","humidity","malaria_risk","dengue_risk"]
)
if len(scatter_cols) < 2:
st.warning("Please select at least two columns to generate a scatter matrix.")
else:
# Prepare data for scatter matrix
sm_df = df[scatter_cols].copy()
# For monthly vs daily, the rainfall column might differ
# If user selected 'monthly_rainfall_mm' but the data is daily, that column might not exist.
# So we can drop missing columns gracefully:
sm_df = sm_df.dropna(axis=1, how='all')
# Using Plotly's scatter_matrix:
fig_sm = px.scatter_matrix(
sm_df,
dimensions=sm_df.columns,
title="Scatter Matrix",
color_discrete_sequence=["#636EFA"] # Adjust color if you like
)
fig_sm.update_layout(width=800, height=800)
st.plotly_chart(fig_sm, use_container_width=True)
##################################################
# 7.3 Simple Time-Lag Correlation (Example)
##################################################
st.subheader("Time-Lag Correlation (Experimental)")
st.markdown("""
Experiment with a simple lag analysis. For example, check how
temperature or rainfall in previous weeks/months correlates with **current**
Malaria/Dengue risk.
""")
time_lag = st.slider("Select Lag (days) to shift weather parameters", min_value=0, max_value=60, value=0, step=5)
# Example: Shift rainfall & temperature columns by the selected lag and see correlation with disease risk
df_lag = df.copy()
if data_choice == "Daily" and time_lag > 0:
# Shift daily rainfall/temperature backward by 'time_lag' days
df_lag = df_lag.sort_values("date") # ensure sorted by date
df_lag["temp_avg_lag"] = df_lag.groupby("location")["temp_avg"].shift(time_lag)
df_lag["rain_lag"] = df_lag.groupby("location")["daily_rainfall_mm"].shift(time_lag)
# If we want to see correlation with today's risk
# we can drop rows with NaN in the lag columns
df_lag.dropna(subset=["temp_avg_lag","rain_lag"], inplace=True)
elif data_choice == "Monthly" and time_lag > 0:
# Shift monthly rainfall & temp by 'time_lag' (in days) => must approximate?
# We'll interpret the slider as months if data is monthly.
# But that might not be precise if "time_lag" is in days. For simplicity, we convert days -> months ~ 30 days
month_lag = time_lag // 30 # approximate conversion
if month_lag > 0:
df_lag = df_lag.sort_values("date")
df_lag["temp_avg_lag"] = df_lag.groupby("location")["temp_avg"].shift(month_lag)
df_lag["rain_lag"] = df_lag.groupby("location")["monthly_rainfall_mm"].shift(month_lag)
df_lag.dropna(subset=["temp_avg_lag","rain_lag"], inplace=True)
# Now we compute correlation between risk_col and these lagged columns, if they exist
if "temp_avg_lag" in df_lag.columns and "rain_lag" in df_lag.columns:
lag_corr_temp = df_lag[risk_col].corr(df_lag["temp_avg_lag"], method=corr_method)
lag_corr_rain = df_lag[risk_col].corr(df_lag["rain_lag"], method=corr_method)
st.write(f"**Correlation between {disease_choice} Risk and lagged Temperature**: {lag_corr_temp:.3f}")
st.write(f"**Correlation between {disease_choice} Risk and lagged Rainfall**: {lag_corr_rain:.3f}")
else:
st.write("No lag columns or lag is set to 0. Increase the lag to see results.")
##################################################
# 7.4 Outbreak Statistics
##################################################
st.subheader("Outbreak Statistics - ⚠️ NEEDS NIMR Data to work")
st.markdown("""
This section will show the **count** of outbreak periods based on selection
and some summary statistics, once we have overlayed NIMR Data with the Existing Weather Data
""")
if disease_choice == "Malaria":
outbreak_flag_col = "malaria_outbreak"
else:
outbreak_flag_col = "dengue_outbreak"
# Summarize outbreak by location
if outbreak_flag_col in df.columns:
outbreak_count_by_loc = df[df[outbreak_flag_col] == True].groupby("location").size().reset_index(name="outbreak_count")
st.write("**Number of outbreak instances (in current selection) by location:**")
st.dataframe(outbreak_count_by_loc)
else:
st.write(f"No outbreak flag column found for {disease_choice}.")
# Show average temperature, rainfall, humidity during outbreak vs non-outbreak
if outbreak_flag_col in df.columns:
with st.expander("Compare Weather Averages During Outbreak vs. Non-Outbreak"):
outbreak_df = df[df[outbreak_flag_col] == True]
non_outbreak_df = df[df[outbreak_flag_col] == False]
if not outbreak_df.empty:
avg_temp_outbreak = outbreak_df["temp_avg"].mean()
avg_hum_outbreak = outbreak_df["humidity"].mean()
if data_choice == "Daily":
avg_rain_outbreak = outbreak_df["daily_rainfall_mm"].mean()
else:
avg_rain_outbreak = outbreak_df["monthly_rainfall_mm"].mean()
avg_temp_non = non_outbreak_df["temp_avg"].mean()
avg_hum_non = non_outbreak_df["humidity"].mean()
if data_choice == "Daily":
avg_rain_non = non_outbreak_df["daily_rainfall_mm"].mean()
else:
avg_rain_non = non_outbreak_df["monthly_rainfall_mm"].mean()
st.write(f"**Outbreak Periods** ({disease_choice}):")
st.write(f"- Avg Temperature: {avg_temp_outbreak:.2f} °C")
st.write(f"- Avg Humidity: {avg_hum_outbreak:.2f}%")
st.write(f"- Avg Rainfall: {avg_rain_outbreak:.2f} mm")
st.write(f"**Non-Outbreak Periods** ({disease_choice}):")
st.write(f"- Avg Temperature: {avg_temp_non:.2f} °C")
st.write(f"- Avg Humidity: {avg_hum_non:.2f}%")
st.write(f"- Avg Rainfall: {avg_rain_non:.2f} mm")
else:
st.write(f"No {disease_choice} outbreaks found in the current selection.")