MALARIA_DENGUE / appV3.py
lyimo's picture
Rename app.py to appV3.py
8a7ba4a verified
raw
history blame
8.9 kB
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import folium
from streamlit_folium import st_folium
# ----------------------------------------------------
# 1. Load data
# ----------------------------------------------------
@st.cache_data
def load_data():
# Load daily and monthly CSV from local files (or a URL if needed)
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
# If monthly_df also needs a 'date' column for plotting (like first day of month), you can create:
# monthly_df["date"] = pd.to_datetime(monthly_df["year"].astype(str) + "-" + monthly_df["month"].astype(str) + "-01")
return daily_df, monthly_df
daily_data, monthly_data = load_data()
# Pre-define your location dictionary so we can map lat/lon
LOCATIONS = {
"Karagwe": {"lat": -1.7718, "lon": 30.9876},
"Masasi": {"lat": -10.7167, "lon": 38.8000},
"Igunga": {"lat": -4.2833, "lon": 33.8833}
}
# ----------------------------------------------------
# 2. Streamlit UI Layout
# ----------------------------------------------------
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")
st.sidebar.header("Filters & Options")
# Choose disease type to focus on
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"])
# Choose data granularity
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"])
# Let user filter location(s)
location_list = list(LOCATIONS.keys())
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)
# For monthly data, let user select a year range
if data_choice == "Monthly":
year_min = int(monthly_data["year"].min())
year_max = int(monthly_data["year"].max())
year_range = st.sidebar.slider("Select Year Range",
min_value=year_min,
max_value=year_max,
value=(year_min, year_max))
# For daily data, let user select a date range
else:
date_min = daily_data["date"].min()
date_max = daily_data["date"].max()
date_range = st.sidebar.date_input("Select Date Range",
[date_min, date_max],
min_value=date_min,
max_value=date_max)
# ----------------------------------------------------
# 3. Filter data based on user input
# ----------------------------------------------------
if data_choice == "Monthly":
# Subset monthly data for selected locations
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
# Filter year range
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
# Create a "date" column for monthly plotting (1st of each month)
# This can help create a time-series for Plotly
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")
else:
# Subset daily data
df = daily_data[daily_data["location"].isin(selected_locations)].copy()
# Filter date range
df = df[(df["date"] >= pd.to_datetime(date_range[0])) & (df["date"] <= pd.to_datetime(date_range[1]))]
# ----------------------------------------------------
# 4. Interactive Plotly Time-Series
# ----------------------------------------------------
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")
# Decide which columns are relevant
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"
if data_choice == "Monthly":
# We'll plot a line chart of risk, temperature, and rainfall vs. date
fig = px.line(df, x="date", y=risk_col, color="location",
title=f"{disease_choice} Risk Over Time ({data_choice})")
fig.update_layout(yaxis_title="Risk (0–1)")
st.plotly_chart(fig, use_container_width=True)
# Optionally plot temperature / rainfall on another figure
col1, col2 = st.columns(2)
with col1:
fig_temp = px.line(df, x="date", y="temp_avg", color="location",
title="Average Temperature (°C)")
st.plotly_chart(fig_temp, use_container_width=True)
with col2:
# 'monthly_rainfall_mm' is total monthly rainfall
fig_rain = px.line(df, x="date", y="monthly_rainfall_mm", color="location",
title="Monthly Rainfall (mm)")
st.plotly_chart(fig_rain, use_container_width=True)
# Show outbreak flags if focusing on monthly
if disease_choice == "Malaria":
flag_col = "malaria_outbreak"
else:
flag_col = "dengue_outbreak"
outbreak_months = df[df[flag_col] == True]
if not outbreak_months.empty:
st.write(f"**Months with likely {disease_choice} outbreak:**")
st.dataframe(outbreak_months[["location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col]])
else:
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")
else:
# For daily data, plot daily risk
fig = px.line(df, x="date", y=risk_col, color="location",
title=f"{disease_choice} Daily Risk Over Time (2013–2024)")
fig.update_layout(yaxis_title="Risk (0–1)")
st.plotly_chart(fig, use_container_width=True)
# Similarly, temperature & daily rainfall
col1, col2 = st.columns(2)
with col1:
fig_temp = px.line(df, x="date", y="temp_avg", color="location",
title="Daily Avg Temperature (°C)")
st.plotly_chart(fig_temp, use_container_width=True)
with col2:
fig_rain = px.line(df, x="date", y="daily_rainfall_mm", color="location",
title="Daily Rainfall (mm)")
st.plotly_chart(fig_rain, use_container_width=True)
# ----------------------------------------------------
# 5. Correlation Heatmap
# ----------------------------------------------------
st.subheader(f"Correlation Heatmap - {data_choice} Data")
# We'll pick relevant numeric columns
if data_choice == "Monthly":
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
else:
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]
corr_df = df[subset_cols].corr()
fig_corr = px.imshow(corr_df, text_auto=True, aspect="auto",
title="Correlation Matrix of Weather & Risk")
st.plotly_chart(fig_corr, use_container_width=True)
# ----------------------------------------------------
# 6. Interactive Map (Folium)
# ----------------------------------------------------
st.subheader("Interactive Map")
st.markdown(
"""
**Note**: We only have 3 locations. Each marker popup shows some aggregated
stats for the displayed data range.
"""
)
# Create a base map centered roughly in Tanzania
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)
# We'll show monthly or daily aggregates in the popups
if data_choice == "Monthly":
# For each location, let's gather monthly avg for the current df
# Then we can show a simple summary in the popup
for loc in selected_locations:
loc_info = LOCATIONS[loc]
loc_df = df[df["location"] == loc]
if loc_df.empty:
continue
# Basic stats: average risk, average rainfall, etc
avg_risk = loc_df[risk_col].mean()
avg_temp = loc_df["temp_avg"].mean()
avg_rain = loc_df["monthly_rainfall_mm"].mean()
# Build popup HTML
popup_html = f"""
<b>{loc}</b><br/>
Disease: {disease_choice}<br/>
Avg Risk (in selection): {avg_risk:.2f}<br/>
Avg Temp (°C): {avg_temp:.2f}<br/>
Avg Rainfall (mm): {avg_rain:.2f}<br/>
"""
folium.Marker(
location=[loc_info["lat"], loc_info["lon"]],
popup=popup_html,
tooltip=f"{loc} ({disease_choice})"
).add_to(m)
else:
# Daily data
for loc in selected_locations:
loc_info = LOCATIONS[loc]
loc_df = df[df["location"] == loc]
if loc_df.empty:
continue
avg_risk = loc_df[risk_col].mean()
avg_temp = loc_df["temp_avg"].mean()
avg_rain = loc_df["daily_rainfall_mm"].mean()
popup_html = f"""
<b>{loc}</b><br/>
Disease: {disease_choice}<br/>
Avg Risk (in selection): {avg_risk:.2f}<br/>
Avg Temp (°C): {avg_temp:.2f}<br/>
Avg Rain (mm/day): {avg_rain:.2f}<br/>
"""
folium.Marker(
location=[loc_info["lat"], loc_info["lon"]],
popup=popup_html,
tooltip=f"{loc} ({disease_choice})"
).add_to(m)
# Render Folium map in Streamlit
st_data = st_folium(m, width=700, height=500)