Spaces:
Sleeping
Sleeping
luanpoppe
commited on
Commit
·
20e3edd
1
Parent(s):
baeaaa5
feat: refatorando código para também conseguir fazer requisções assíncronas com o claude
Browse files
_utils/gerar_relatorio_modelo_usuario/contextual_retriever.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
from typing import List, Dict, Tuple, Optional
|
4 |
-
from anthropic import Anthropic
|
5 |
import logging
|
6 |
from langchain.schema import Document
|
7 |
import asyncio
|
@@ -10,6 +10,7 @@ from typing import List
|
|
10 |
from multiprocessing import Process, Barrier, Queue
|
11 |
from dataclasses import dataclass
|
12 |
from langchain_core.messages import HumanMessage
|
|
|
13 |
|
14 |
from _utils.gerar_relatorio_modelo_usuario.llm_calls import claude_answer, gpt_answer
|
15 |
from _utils.gerar_relatorio_modelo_usuario.prompts import contextual_prompt
|
@@ -21,12 +22,14 @@ from _utils.models.gerar_relatorio import (
|
|
21 |
|
22 |
lista_contador = []
|
23 |
|
|
|
24 |
class ContextualRetriever:
|
25 |
def __init__(
|
26 |
self, config: RetrievalConfig, claude_api_key: str, claude_context_model: str
|
27 |
):
|
28 |
self.config = config
|
29 |
-
self.claude_client = Anthropic(api_key=claude_api_key)
|
|
|
30 |
self.logger = logging.getLogger(__name__)
|
31 |
self.bm25 = None
|
32 |
self.claude_context_model = claude_context_model
|
@@ -36,7 +39,10 @@ class ContextualRetriever:
|
|
36 |
try:
|
37 |
print("COMEÇOU A REQUISIÇÃO")
|
38 |
prompt = contextual_prompt(full_text, chunk.content)
|
39 |
-
# response = claude_answer(
|
|
|
|
|
|
|
40 |
response = await gpt_answer(prompt)
|
41 |
return response
|
42 |
except Exception as e:
|
@@ -48,12 +54,15 @@ class ContextualRetriever:
|
|
48 |
async def create_contextualized_chunk(self, chunk, full_text):
|
49 |
lista_contador.append(0)
|
50 |
print("contador: ", len(lista_contador))
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
context = await self.llm_generate_context(page_content, chunk)
|
59 |
return ContextualizedChunk(
|
@@ -70,6 +79,7 @@ class ContextualRetriever:
|
|
70 |
) -> List[ContextualizedChunk]:
|
71 |
"""Add context to all chunks"""
|
72 |
contextualized_chunks = []
|
|
|
73 |
|
74 |
async with asyncio.TaskGroup() as tg:
|
75 |
tasks = [
|
|
|
1 |
import os
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
from typing import List, Dict, Tuple, Optional
|
4 |
+
from anthropic import Anthropic, AsyncAnthropic
|
5 |
import logging
|
6 |
from langchain.schema import Document
|
7 |
import asyncio
|
|
|
10 |
from multiprocessing import Process, Barrier, Queue
|
11 |
from dataclasses import dataclass
|
12 |
from langchain_core.messages import HumanMessage
|
13 |
+
from asgiref.sync import sync_to_async
|
14 |
|
15 |
from _utils.gerar_relatorio_modelo_usuario.llm_calls import claude_answer, gpt_answer
|
16 |
from _utils.gerar_relatorio_modelo_usuario.prompts import contextual_prompt
|
|
|
22 |
|
23 |
lista_contador = []
|
24 |
|
25 |
+
|
26 |
class ContextualRetriever:
|
27 |
def __init__(
|
28 |
self, config: RetrievalConfig, claude_api_key: str, claude_context_model: str
|
29 |
):
|
30 |
self.config = config
|
31 |
+
# self.claude_client = Anthropic(api_key=claude_api_key)
|
32 |
+
self.claude_client = AsyncAnthropic(api_key=claude_api_key)
|
33 |
self.logger = logging.getLogger(__name__)
|
34 |
self.bm25 = None
|
35 |
self.claude_context_model = claude_context_model
|
|
|
39 |
try:
|
40 |
print("COMEÇOU A REQUISIÇÃO")
|
41 |
prompt = contextual_prompt(full_text, chunk.content)
|
42 |
+
# response = await claude_answer(
|
43 |
+
# self.claude_client, self.claude_context_model, prompt
|
44 |
+
# )
|
45 |
+
|
46 |
response = await gpt_answer(prompt)
|
47 |
return response
|
48 |
except Exception as e:
|
|
|
54 |
async def create_contextualized_chunk(self, chunk, full_text):
|
55 |
lista_contador.append(0)
|
56 |
print("contador: ", len(lista_contador))
|
57 |
+
# Código comentado abaixo é para ler as páginas ao redor da página atual do chunk
|
58 |
+
# page_content = ""
|
59 |
+
# for i in range(
|
60 |
+
# max(0, chunk.page_number - 1),
|
61 |
+
# min(len(full_text), chunk.page_number + 2),
|
62 |
+
# ):
|
63 |
+
# page_content += full_text[i].page_content if full_text[i] else ""
|
64 |
+
page_number = chunk.page_number - 1
|
65 |
+
page_content = full_text[page_number].page_content
|
66 |
|
67 |
context = await self.llm_generate_context(page_content, chunk)
|
68 |
return ContextualizedChunk(
|
|
|
79 |
) -> List[ContextualizedChunk]:
|
80 |
"""Add context to all chunks"""
|
81 |
contextualized_chunks = []
|
82 |
+
lista_contador = []
|
83 |
|
84 |
async with asyncio.TaskGroup() as tg:
|
85 |
tasks = [
|
_utils/gerar_relatorio_modelo_usuario/llm_calls.py
CHANGED
@@ -3,8 +3,11 @@ from langchain_core.messages import HumanMessage
|
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
5 |
|
6 |
-
def claude_answer(claude_client, claude_context_model, prompt):
|
7 |
-
|
|
|
|
|
|
|
8 |
model=claude_context_model,
|
9 |
max_tokens=100,
|
10 |
messages=[{"role": "user", "content": prompt}],
|
|
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
5 |
|
6 |
+
async def claude_answer(claude_client, claude_context_model, prompt):
|
7 |
+
print("\n")
|
8 |
+
print("Começou uma requisição pelo Claude")
|
9 |
+
print("\n")
|
10 |
+
response = await claude_client.messages.create(
|
11 |
model=claude_context_model,
|
12 |
max_tokens=100,
|
13 |
messages=[{"role": "user", "content": prompt}],
|