Spaces:
Running
Running
File size: 9,722 Bytes
1286e81 12d3e1a 1286e81 fe21938 1286e81 baeaaa5 1286e81 12d3e1a 1286e81 12d3e1a 1286e81 cb23311 12d3e1a 1286e81 12d3e1a 1286e81 cb23311 12d3e1a 1286e81 ecd9808 1286e81 12d3e1a 1286e81 baeaaa5 1286e81 57fd1ba fe21938 57fd1ba cb23311 57fd1ba cb23311 57fd1ba cb23311 1286e81 cb23311 12d3e1a 1286e81 cb23311 1286e81 cb23311 ecd9808 cb23311 12d3e1a cb23311 1286e81 cb23311 7fa7a9c cb23311 1286e81 12d3e1a 1286e81 cb23311 1286e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import os
from typing import List, Dict, Tuple, Optional
from _utils.vector_stores.Vector_store_class import VectorStore
from setup.easy_imports import (
Chroma,
ChatOpenAI,
PromptTemplate,
BM25Okapi,
Response,
)
import logging
import requests
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import (
DocumentSummarizer,
)
from _utils.models.gerar_relatorio import (
RetrievalConfig,
)
from modelos_usuarios.serializer import ModeloUsuarioSerializer
from setup.environment import api_url
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
ContextualRetriever,
)
from asgiref.sync import sync_to_async
class EnhancedDocumentSummarizer(DocumentSummarizer):
def __init__(
self,
openai_api_key: str,
claude_api_key: str,
config: RetrievalConfig,
embedding_model,
chunk_size,
chunk_overlap,
num_k_rerank,
model_cohere_rerank,
claude_context_model,
prompt_auxiliar,
gpt_model,
gpt_temperature,
# id_modelo_do_usuario,
prompt_gerar_documento,
reciprocal_rank_fusion,
):
super().__init__(
openai_api_key,
os.environ.get("COHERE_API_KEY"),
embedding_model,
chunk_size,
chunk_overlap,
num_k_rerank,
model_cohere_rerank,
)
self.config = config
self.contextual_retriever = ContextualRetriever(
config, claude_api_key, claude_context_model
)
self.logger = logging.getLogger(__name__)
self.prompt_auxiliar = prompt_auxiliar
self.gpt_model = gpt_model
self.gpt_temperature = gpt_temperature
# self.id_modelo_do_usuario = id_modelo_do_usuario
self.prompt_gerar_documento = prompt_gerar_documento
self.reciprocal_rank_fusion = reciprocal_rank_fusion
self.resumo_gerado = ""
self.vector_store = VectorStore(embedding_model)
def retrieve_with_rank_fusion(
self, vector_store: Chroma, bm25: BM25Okapi, chunk_ids: List[str], query: str
) -> List[Dict]:
"""Combine embedding and BM25 retrieval results"""
try:
# Get embedding results
embedding_results = vector_store.similarity_search_with_score(
query, k=self.config.num_chunks
)
# Convert embedding results to list of (chunk_id, score)
embedding_list = [
(doc.metadata["chunk_id"], 1 / (1 + score))
for doc, score in embedding_results
]
# Get BM25 results
tokenized_query = query.split()
bm25_scores = bm25.get_scores(tokenized_query)
# Convert BM25 scores to list of (chunk_id, score)
bm25_list = [
(chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores)
]
# Sort bm25_list by score in descending order and limit to top N results
bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[
: self.config.num_chunks
]
# Normalize BM25 scores
calculo_max = max(
[score for _, score in bm25_list]
) # Criei este max() pois em alguns momentos estava vindo valores 0, e reclamava que não podia dividir por 0
max_bm25 = calculo_max if bm25_list and calculo_max else 1
bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list]
# Pass the lists to rank fusion
result_lists = [embedding_list, bm25_list]
weights = [self.config.embedding_weight, self.config.bm25_weight]
combined_results = self.reciprocal_rank_fusion(
result_lists, weights=weights
)
return combined_results
except Exception as e:
self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
raise
async def generate_enhanced_summary(
self,
vector_store: Chroma,
bm25: BM25Okapi,
chunk_ids: List[str],
query: str = "Summarize the main points of this document",
) -> List[Dict]:
"""Generate enhanced summary using both vector and BM25 retrieval"""
try:
# Get combined results using rank fusion
ranked_results = self.retrieve_with_rank_fusion(
vector_store, bm25, chunk_ids, query
)
# Prepare context and track sources
contexts = []
sources = []
# Get full documents for top results
for chunk_id, score in ranked_results[: self.config.num_chunks]:
results = vector_store.get(
where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
)
if results["documents"]:
context = results["documents"][0]
metadata = results["metadatas"][0]
contexts.append(context)
sources.append(
{
"content": context,
"page": metadata["page"],
"chunk_id": chunk_id,
"relevance_score": score,
"context": metadata.get("context", ""),
}
)
# url_request = f"{api_url}/modelo/{self.id_modelo_do_usuario}"
# try:
# print("url_request: ", url_request)
# resposta = requests.get(url_request)
# print("resposta: ", resposta)
# if resposta.status_code != 200:
# print("Entrou no if de erro")
# return Response(
# {
# "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
# }
# )
# except:
# return Response(
# {
# "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
# }
# )
# modelo_buscado = resposta.json()["modelo"]
# from modelos_usuarios.models import ModeloUsuarioModel
# try:
# # modelo_buscado = ModeloUsuarioModel.objects.get(
# # pk=self.id_modelo_do_usuario
# # )
# # serializer = ModeloUsuarioSerializer(modelo_buscado)
# # print("serializer.data: ", serializer.data)
# modelo_buscado = await sync_to_async(ModeloUsuarioModel.objects.get)(
# pk=self.id_modelo_do_usuario
# )
# serializer = await sync_to_async(ModeloUsuarioSerializer)(
# modelo_buscado
# )
# print("serializer.data: ", serializer.data)
# except Exception as e:
# print("e: ", e)
# return Response(
# {
# "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica",
# "full_error": e,
# },
# 400,
# )
# print("modelo_buscado: ", serializer.data["modelo"])
llm = ChatOpenAI(
temperature=self.gpt_temperature,
model_name=self.gpt_model,
api_key=self.openai_api_key,
)
prompt_auxiliar = PromptTemplate(
template=self.prompt_auxiliar, input_variables=["context"]
)
resumo_auxiliar_do_documento = llm.invoke(
prompt_auxiliar.format(context="\n\n".join(contexts))
)
self.resumo_gerado = resumo_auxiliar_do_documento.content
prompt_gerar_documento = PromptTemplate(
template=self.prompt_gerar_documento,
input_variables=["context"],
)
documento_gerado = llm.invoke(
prompt_gerar_documento.format(
context=self.resumo_gerado,
# modelo_usuario=serializer.data["modelo"],
)
).content
# Split the response into paragraphs
summaries = [p.strip() for p in documento_gerado.split("\n\n") if p.strip()]
# Create structured output
structured_output = []
for idx, summary in enumerate(summaries):
source_idx = min(idx, len(sources) - 1)
structured_output.append(
{
"content": summary,
"source": {
"page": sources[source_idx]["page"],
"text": sources[source_idx]["content"][:200] + "...",
"context": sources[source_idx]["context"],
"relevance_score": sources[source_idx]["relevance_score"],
"chunk_id": sources[source_idx]["chunk_id"],
},
}
)
return structured_output
except Exception as e:
self.logger.error(f"Error generating enhanced summary: {str(e)}")
raise
|