File size: 9,722 Bytes
1286e81
 
12d3e1a
 
 
 
 
 
 
 
1286e81
 
 
 
 
 
 
 
fe21938
1286e81
 
 
 
baeaaa5
1286e81
 
 
12d3e1a
1286e81
 
 
 
 
 
 
 
 
 
 
12d3e1a
1286e81
 
cb23311
12d3e1a
 
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d3e1a
1286e81
 
cb23311
12d3e1a
1286e81
ecd9808
1286e81
12d3e1a
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeaaa5
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd1ba
 
 
 
 
 
 
 
 
 
 
 
fe21938
 
 
 
 
 
 
57fd1ba
cb23311
57fd1ba
cb23311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd1ba
cb23311
1286e81
 
 
 
 
 
 
cb23311
12d3e1a
1286e81
 
cb23311
 
1286e81
 
cb23311
ecd9808
cb23311
12d3e1a
cb23311
1286e81
 
cb23311
 
7fa7a9c
cb23311
1286e81
12d3e1a
1286e81
 
cb23311
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
from typing import List, Dict, Tuple, Optional
from _utils.vector_stores.Vector_store_class import VectorStore
from setup.easy_imports import (
    Chroma,
    ChatOpenAI,
    PromptTemplate,
    BM25Okapi,
    Response,
)
import logging
import requests
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import (
    DocumentSummarizer,
)
from _utils.models.gerar_relatorio import (
    RetrievalConfig,
)
from modelos_usuarios.serializer import ModeloUsuarioSerializer
from setup.environment import api_url
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
    ContextualRetriever,
)
from asgiref.sync import sync_to_async


class EnhancedDocumentSummarizer(DocumentSummarizer):

    def __init__(
        self,
        openai_api_key: str,
        claude_api_key: str,
        config: RetrievalConfig,
        embedding_model,
        chunk_size,
        chunk_overlap,
        num_k_rerank,
        model_cohere_rerank,
        claude_context_model,
        prompt_auxiliar,
        gpt_model,
        gpt_temperature,
        # id_modelo_do_usuario,
        prompt_gerar_documento,
        reciprocal_rank_fusion,
    ):
        super().__init__(
            openai_api_key,
            os.environ.get("COHERE_API_KEY"),
            embedding_model,
            chunk_size,
            chunk_overlap,
            num_k_rerank,
            model_cohere_rerank,
        )
        self.config = config
        self.contextual_retriever = ContextualRetriever(
            config, claude_api_key, claude_context_model
        )
        self.logger = logging.getLogger(__name__)
        self.prompt_auxiliar = prompt_auxiliar
        self.gpt_model = gpt_model
        self.gpt_temperature = gpt_temperature
        # self.id_modelo_do_usuario = id_modelo_do_usuario
        self.prompt_gerar_documento = prompt_gerar_documento
        self.reciprocal_rank_fusion = reciprocal_rank_fusion
        self.resumo_gerado = ""

        self.vector_store = VectorStore(embedding_model)

    def retrieve_with_rank_fusion(
        self, vector_store: Chroma, bm25: BM25Okapi, chunk_ids: List[str], query: str
    ) -> List[Dict]:
        """Combine embedding and BM25 retrieval results"""
        try:
            # Get embedding results
            embedding_results = vector_store.similarity_search_with_score(
                query, k=self.config.num_chunks
            )

            # Convert embedding results to list of (chunk_id, score)
            embedding_list = [
                (doc.metadata["chunk_id"], 1 / (1 + score))
                for doc, score in embedding_results
            ]

            # Get BM25 results
            tokenized_query = query.split()
            bm25_scores = bm25.get_scores(tokenized_query)

            # Convert BM25 scores to list of (chunk_id, score)
            bm25_list = [
                (chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores)
            ]

            # Sort bm25_list by score in descending order and limit to top N results
            bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[
                : self.config.num_chunks
            ]

            # Normalize BM25 scores
            calculo_max = max(
                [score for _, score in bm25_list]
            )  # Criei este max() pois em alguns momentos estava vindo valores 0, e reclamava que não podia dividir por 0
            max_bm25 = calculo_max if bm25_list and calculo_max else 1
            bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list]

            # Pass the lists to rank fusion
            result_lists = [embedding_list, bm25_list]
            weights = [self.config.embedding_weight, self.config.bm25_weight]

            combined_results = self.reciprocal_rank_fusion(
                result_lists, weights=weights
            )

            return combined_results

        except Exception as e:
            self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
            raise

    async def generate_enhanced_summary(
        self,
        vector_store: Chroma,
        bm25: BM25Okapi,
        chunk_ids: List[str],
        query: str = "Summarize the main points of this document",
    ) -> List[Dict]:
        """Generate enhanced summary using both vector and BM25 retrieval"""
        try:
            # Get combined results using rank fusion
            ranked_results = self.retrieve_with_rank_fusion(
                vector_store, bm25, chunk_ids, query
            )

            # Prepare context and track sources
            contexts = []
            sources = []

            # Get full documents for top results
            for chunk_id, score in ranked_results[: self.config.num_chunks]:
                results = vector_store.get(
                    where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
                )

                if results["documents"]:
                    context = results["documents"][0]
                    metadata = results["metadatas"][0]

                    contexts.append(context)
                    sources.append(
                        {
                            "content": context,
                            "page": metadata["page"],
                            "chunk_id": chunk_id,
                            "relevance_score": score,
                            "context": metadata.get("context", ""),
                        }
                    )

            # url_request = f"{api_url}/modelo/{self.id_modelo_do_usuario}"
            # try:
            #     print("url_request: ", url_request)
            #     resposta = requests.get(url_request)
            #     print("resposta: ", resposta)
            #     if resposta.status_code != 200:
            #         print("Entrou no if de erro")
            #         return Response(
            #             {
            #                 "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
            #             }
            #         )
            # except:
            #     return Response(
            #         {
            #             "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica"
            #         }
            #     )

            # modelo_buscado = resposta.json()["modelo"]
            # from modelos_usuarios.models import ModeloUsuarioModel

            # try:
            #     # modelo_buscado = ModeloUsuarioModel.objects.get(
            #     #     pk=self.id_modelo_do_usuario
            #     # )
            #     # serializer = ModeloUsuarioSerializer(modelo_buscado)
            #     # print("serializer.data: ", serializer.data)
            #     modelo_buscado = await sync_to_async(ModeloUsuarioModel.objects.get)(
            #         pk=self.id_modelo_do_usuario
            #     )
            #     serializer = await sync_to_async(ModeloUsuarioSerializer)(
            #         modelo_buscado
            #     )
            #     print("serializer.data: ", serializer.data)

            # except Exception as e:
            #     print("e: ", e)
            #     return Response(
            #         {
            #             "error": "Ocorreu um problema. Pode ser que o modelo não tenha sido encontrado. Tente novamente e/ou entre em contato com a equipe técnica",
            #             "full_error": e,
            #         },
            #         400,
            #     )

            # print("modelo_buscado: ", serializer.data["modelo"])

            llm = ChatOpenAI(
                temperature=self.gpt_temperature,
                model_name=self.gpt_model,
                api_key=self.openai_api_key,
            )

            prompt_auxiliar = PromptTemplate(
                template=self.prompt_auxiliar, input_variables=["context"]
            )

            resumo_auxiliar_do_documento = llm.invoke(
                prompt_auxiliar.format(context="\n\n".join(contexts))
            )

            self.resumo_gerado = resumo_auxiliar_do_documento.content

            prompt_gerar_documento = PromptTemplate(
                template=self.prompt_gerar_documento,
                input_variables=["context"],
            )

            documento_gerado = llm.invoke(
                prompt_gerar_documento.format(
                    context=self.resumo_gerado,
                    # modelo_usuario=serializer.data["modelo"],
                )
            ).content

            # Split the response into paragraphs
            summaries = [p.strip() for p in documento_gerado.split("\n\n") if p.strip()]

            # Create structured output
            structured_output = []
            for idx, summary in enumerate(summaries):
                source_idx = min(idx, len(sources) - 1)
                structured_output.append(
                    {
                        "content": summary,
                        "source": {
                            "page": sources[source_idx]["page"],
                            "text": sources[source_idx]["content"][:200] + "...",
                            "context": sources[source_idx]["context"],
                            "relevance_score": sources[source_idx]["relevance_score"],
                            "chunk_id": sources[source_idx]["chunk_id"],
                        },
                    }
                )

            return structured_output

        except Exception as e:
            self.logger.error(f"Error generating enhanced summary: {str(e)}")
            raise