Spaces:
Sleeping
Sleeping
File size: 1,543 Bytes
f8515e0 fa2391a f8515e0 fa2391a f8515e0 fa2391a d1c4f7a fa2391a d1c4f7a fa2391a d1c4f7a fa2391a d1c4f7a fa2391a d1c4f7a fa2391a d1c4f7a fa2391a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
def chatbot(input_text, chat_history):
# Encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
# Append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.tensor(chat_history), new_user_input_ids], dim=-1) if chat_history else new_user_input_ids
# Generate a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# Decode the last output tokens from bot
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
# Append to chat history for next turn. Important: Return the *full* chat history tensor to Gradio
chat_history_tensor = chat_history_ids.tolist()
return output, chat_history_tensor
iface = gr.ChatInterface(
fn=chatbot,
inputs=["text", "state"], # "state" will hold the chat history as a tensor list
outputs=["text", "state"],
title="DialoGPT Chatbot (Small)",
description="Simple chat application using microsoft/DialoGPT-small model. Try it out!",
examples=["Hello", "How are you?", "Tell me a joke"]
)
iface.launch() |