File size: 5,463 Bytes
703dffd
 
 
 
a4a37cc
 
703dffd
a4a37cc
703dffd
a4a37cc
 
 
 
 
 
 
 
 
 
 
 
703dffd
a4a37cc
703dffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439d0c0
703dffd
 
 
 
263c06c
703dffd
263c06c
 
 
 
 
 
703dffd
 
4789079
703dffd
 
 
 
 
4789079
703dffd
 
 
 
a4a37cc
4789079
703dffd
 
 
 
 
 
 
 
 
cde3f2b
8b4727e
703dffd
 
cde3f2b
8b4727e
703dffd
 
a4a37cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703dffd
 
 
 
 
 
f70c67c
703dffd
 
a4a37cc
 
 
703dffd
a4a37cc
 
 
703dffd
b54cb8f
703dffd
00785bd
703dffd
a4a37cc
703dffd
 
a4a37cc
 
 
 
 
 
 
 
 
703dffd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
from huggingface_hub import list_spaces
from cachetools import TTLCache, cached
from toolz import groupby, valmap
from diskcache import Cache
import platform

is_macos = platform.system() == "Darwin"

if is_macos:
    cache = Cache("cache")

    def cached_decorator(func):
        return cache.memoize(typed=True, expire=1)(func)

else:
    ttl_cache = TTLCache(maxsize=100, ttl=60 * 10)
    cached_decorator = cached(cache=ttl_cache)


@cached_decorator
def get_spaces():
    return list(list_spaces(full=True))


get_spaces()  # to warm up the cache


def create_space_to_like_dict():
    spaces = get_spaces()
    return {space.id: space.likes for space in spaces}


def create_org_to_like_dict():
    spaces = get_spaces()
    grouped = groupby(lambda x: x.author, spaces)
    return valmap(lambda x: sum(s.likes for s in x), grouped)


def relative_rank(my_dict, target_key, filter_zero=False):
    if filter_zero:
        my_dict = {k: v for k, v in my_dict.items() if v != 0}

    if target_key not in my_dict:
        raise gr.Error(f"'{target_key}' not found lease check the ID and try again.")

    sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True)

    position = [key for key, _ in sorted_items].index(target_key)
    num_lower = len(sorted_items) - position - 1

    num_higher = position
    return {
        "rank": (num_higher + 1) / len(my_dict) * 100,
        "num_higher": num_higher,
        "num_lower": num_lower,
    }


@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def relative_rank_for_space(space_id, filter_zero=False):
    space_to_like_dict = create_space_to_like_dict()
    return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero)


@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def relative_rank_for_org(org_id, filter_zero=False):
    org_to_like_dict = create_org_to_like_dict()
    return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero)


@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def rank_space(space_id):
    return relative_rank_for_space(space_id)


def rank_space_and_org(space_or_org_id, filter_zero):
    filter_zero = filter_zero == "yes"
    split = space_or_org_id.split("/")
    if len(split) == 2:
        space_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero)
        return f"""Space [{space_or_org_id}](https://huggingface.co/spaces/{space_or_org_id}) is ranked {space_rank['rank']:.2f}%
        with {space_rank['num_higher']:,} Spaces above and {space_rank['num_lower']:,} Spaces below in the raking of Space likes"""
    if len(split) == 1:
        org_rank = relative_rank_for_org(space_or_org_id, filter_zero=filter_zero)
        return f"""Organization or user [{space_or_org_id}](https://huggingface.co/{space_or_org_id}) is ranked {org_rank['rank']:.2f}%
            with {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the raking of Space likes"""


def get_top_n_orgs_and_users(top_n=100):
    orgs_to_likes = create_org_to_like_dict()
    sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True)
    sorted_items = sorted_items[:top_n]
    return sorted_items


def plot_top_n_orgs_and_users(top_n=100):
    top_n = get_top_n_orgs_and_users(top_n)
    return "".join(
        f"\n- [{org}](https://huggingface.co/{org}) with {likes:,} likes"
        for org, likes in top_n
    )


def get_top_n_spaces(top_n=100):
    orgs_to_likes = create_space_to_like_dict()
    sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True)
    sorted_items = sorted_items[:top_n]
    return sorted_items


def plot_top_n_spaces(top_n=100):
    top_n = get_top_n_spaces(top_n)
    return "".join(
        f"\n- [{space}](https://huggingface.co/spaces/{space}) with {likes:,} likes"
        for space, likes in top_n
    )


with gr.Blocks() as demo:
    gr.HTML("<h1 style='text-align: center;'> &#127942; HuggyRanker &#127942; </h1>")
    gr.HTML(
        """<p style='text-align: center;'>Rank a single Space or all of the Spaces created by an organization or user by likes</p>"""
    )
    gr.HTML(
        """<p style="text-align: center;"><i>Remember likes aren't everything!</i></p>"""
    )
    gr.Markdown(
        """## Rank Specific Spaces or Orgs
    Provide this app with a Space ID or a Username/Organization name to rank by likes."""
    )
    with gr.Row():
        space_id = gr.Textbox(
            "librarian-bots", max_lines=1, label="Space or user/organization ID"
        )
        filter_zero = gr.Radio(
            choices=["no", "yes"],
            label="Filter out spaces with 0 likes in the ranking?",
            value="yes",
        )
    run_btn = gr.Button("Show ranking for this Space org org/user!", label="Rank Space")
    result = gr.Markdown()
    run_btn.click(rank_space_and_org, inputs=[space_id, filter_zero], outputs=result)
    gr.Markdown("## Leaderboard of Top 100 Spaces and Orgs/Users by Likes")
    with gr.Row():
        with gr.Accordion("Show rankings for Orgs and Users", open=False):
            gr.Markdown("""## πŸ₯‡ Top 100 Orgs and Users by Likes πŸ₯‡""")
            ranking_board = gr.Markdown(plot_top_n_orgs_and_users())
        with gr.Accordion("Show rankings for Spaces", open=False):
            gr.Markdown("""## πŸ… Top 100 Spaces by Likes πŸ…""")
            ranking_board = gr.Markdown(plot_top_n_spaces())


demo.launch()