from fastai.vision.all import * import gradio as gr import glob learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) _, _, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title='Japanese Food Classifier' description = ('Japanese food classifier trained on duckduckgo image search generated custom dataset, fastai library and fine-tuned with the resnet18 model') article="
" subfolder = Path('images') search_pattern = str(subfolder/'*.jpg') jpg_files = glob.glob(search_pattern) intf = gr.Interface( fn=predict, inputs=gr.Image(height=512, width=512), outputs=gr.Label(num_top_classes=10), title=title, description=description, article=article, examples=jpg_files, examples_per_page=37 ) intf.launch()