Spaces:
Restarting
Restarting
import cv2 | |
import gradio as gr | |
import numpy as np | |
from human_pose_estimator import PoseEstimator | |
from pose_estimator import rect | |
pose_estimator = PoseEstimator("cpu") | |
def get_box(image): | |
image_box, _ = rect(pose_estimator, image) | |
return image_box | |
def predict(img: np.ndarray): | |
poses, _, _ = pose_estimator.get_poses(img, 512) | |
for pose in poses: | |
pose.draw(img) | |
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]), | |
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0)) | |
return img | |
footer = r""" | |
<center> | |
<b> | |
Demo for <a href='https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch'>Lightweight OpenPose</a> | |
</b> | |
</center> | |
""" | |
with gr.Blocks(title="OpenPose") as app: | |
gr.HTML("<center><h1>Human Pose Estimation Pytorch</h1></center>") | |
gr.HTML("<center><h3>Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose</h3></center>") | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
input_img = gr.Image(type="numpy", label="Input image") | |
# input_img = gr.Video(source="webcam") | |
run_btn = gr.Button(variant="primary") | |
with gr.Column(): | |
output_img = gr.Image(type="pil", label="Output image") | |
gr.ClearButton(components=[input_img, output_img], variant="stop") | |
run_btn.click(predict, [input_img], [output_img]) | |
with gr.Row(): | |
blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] | |
examples = gr.Dataset(components=[input_img], samples=blobs) | |
examples.click(lambda x: x[0], [examples], [input_img]) | |
with gr.Row(): | |
gr.HTML(footer) | |
app.launch(share=False, debug=True, show_error=True) | |
app.queue() | |