from __future__ import annotations
import numpy as np
import pandas as pd
import requests
from huggingface_hub.hf_api import SpaceInfo
url = 'https://docs.google.com/spreadsheets/d/1RoM2DgzaYJg6Ias1YNC2kQN01xSWJb1KEER9efb0X7A/edit#gid=0'
csv_url = url.replace('/edit#gid=', '/export?format=csv&gid=')
class DatasetList:
def __init__(self):
self.table = pd.read_csv(csv_url)
self._preprocess_table()
self.table_header = '''
Dataset Name |
Question Type |
Applied In Paper |
Reference Paper |
Brief Description |
Count |
Original Access Link |
Publicly Available? |
Access link on 🤗 |
'''
def _preprocess_table(self) -> None:
self.table['dataset_name_lowercase'] = self.table.dataset_name.str.lower()
self.table['count'] = self.table['count'].apply(str)
rows = []
for row in self.table.itertuples():
dataset_name = f'{row.dataset_name}' if isinstance(row.dataset_name, str) else ''
question_type = f'{row.question_type}' if isinstance(row.question_type, str) else ''
used_in_paper = f'{row.used_in_paper}' if isinstance(row.used_in_paper, str) else ''
reference_paper = f'Paper' if isinstance(row.reference_paper, str) else ''
brief_description = f'{row.brief_description}' if isinstance(row.brief_description, str) else ''
count = f'{row.count}' if isinstance(row.count, str) else ''
original_link = f'Access Link' if isinstance(row.original_link, str) else ''
publicly_available = f'License' if isinstance(row.publicly_available, str) else ''
huggingface_link = f'HF Link' if isinstance(row.huggingface_link, str) else ''
row = f'''
{dataset_name} |
{question_type} |
{used_in_paper} |
{reference_paper} |
{brief_description} |
{count} |
{original_link} |
{publicly_available} |
{huggingface_link} |
'''
rows.append(row)
self.table['html_table_content'] = rows
def render(self, search_query: str,
case_sensitive: bool,
filter_names: list[str]
) -> tuple[int, str]:
df = self.table
if search_query:
if case_sensitive:
df = df[df.dataset_name.str.contains(search_query)]
else:
df = df[df.dataset_name_lowercase.str.contains(search_query.lower())]
has_dataset = 'Dataset' in filter_names
has_datalink = 'Data Link' in filter_names
has_paper = 'Paper' in filter_names
df = self.filter_table(df, has_dataset, has_datalink, has_paper)
#df = self.filter_table(df, has_paper, has_github, has_model, data_types, model_types)
return len(df), self.to_html(df, self.table_header)
@staticmethod
def filter_table(df: pd.DataFrame,
has_dataset: bool,
has_datalink: bool,
has_paper: bool
) -> pd.DataFrame:
if has_dataset:
df = df[~df.dataset_name.isna()]
if has_datalink:
df = df[~df.huggingface_link.isna() | ~df.original_link.isna()]
if has_paper:
df = df[~df.reference_paper.isna()]
# df = df[df.data_type.isin(set(data_types))]
#df = df[df.base_model.isin(set(model_types))]
# df = df[df.year.isin(set(years))]
return df
@staticmethod
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = ''.join(df.html_table_content)
html = f'''
{table_header}
{table_data}
'''
return html