Spaces:
Build error
Build error
File size: 16,937 Bytes
965ac15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
from datetime import datetime
from core.pineconeqa import PineconeQA
import gradio as gr
from config import get_settings
from openai import OpenAI
from utils.models import DatabaseManager
import json
import hashlib
import tempfile
import os
class MedicalChatbot:
def __init__(self):
self.settings = get_settings()
self.qa_system = PineconeQA(
pinecone_api_key=self.settings.PINECONE_API_KEY,
openai_api_key=self.settings.OPENAI_API_KEY,
index_name=self.settings.INDEX_NAME
)
self.client = OpenAI(api_key=self.settings.OPENAI_API_KEY)
self.db = DatabaseManager()
self.current_doctor = None
self.current_session_id = None
def handle_session(self, doctor_name):
"""Create a new session if doctor name changes or no session exists"""
# Always create a new session
self.current_session_id = self.db.create_session(doctor_name)
self.current_doctor = doctor_name
return self.current_session_id
def get_user_identifier(self, request: gr.Request):
"""Create a unique user identifier from IP and user agent"""
if request is None:
return "anonymous"
identifier = f"{request.client.host}_{request.headers.get('User-Agent', 'unknown')}"
return hashlib.sha256(identifier.encode()).hexdigest()[:32]
def detect_message_type(self, message):
"""Use ChatGPT to detect if the message is a basic interaction or a knowledge query"""
try:
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": """Analyze the following message and determine if it's:
1. A basic interaction like hello, thanks, how are you(greetings, thanks, farewell, etc.)
2. A question or request for information
return only 'basic' if the message is only for greeting, or return query
Respond with just the type: 'basic' or 'query'"""
},
{"role": "user", "content": message}
],
temperature=0.3,
max_tokens=10
)
return response.choices[0].message.content.strip().lower()
except Exception as e:
print(f'error encountered. returning query.\nError: {str(e)}')
return "query"
def get_chatgpt_response(self, message, history):
"""Get a response from ChatGPT"""
try:
chat_history = []
for human, assistant in history:
chat_history.extend([
{"role": "user", "content": human},
{"role": "assistant", "content": assistant}
])
messages = [
{
"role": "system",
"content": """ "You are an expert assistant for biomedical question-answering tasks. "
"You will be provided with context retrieved from medical literature."
"The medical literature is all from PubMed Open Access Articles. "
"Use this context to answer the question as accurately as possible. "
"The response might not be added precisely, so try to derive the answers from it as much as possible."
"If the context does not contain the required information, explain why. "
"Provide a concise and accurate answer """
}
] + chat_history + [
{"role": "user", "content": message}
]
response = self.client.chat.completions.create(
model="gpt-4",
messages=messages,
temperature=0.7,
max_tokens=500
)
return response.choices[0].message.content
except Exception as e:
return f"I apologize, but I encountered an error: {str(e)}"
def synthesize_answer(self, query, context_docs, history):
"""Synthesize an answer from multiple context documents using ChatGPT"""
try:
context = "\n\n".join([doc.page_content for doc in context_docs])
messages = [
{
"role": "system",
"content": """You are a medical expert assistant. Using the provided context,
synthesize a comprehensive, accurate answer. If the context doesn't contain
enough relevant information, say so and provide general medical knowledge.
Always maintain a professional yet accessible tone."""
},
{
"role": "user",
"content": f"""Context information:\n{context}\n\n
Based on this context and your medical knowledge, please answer the following question:\n{query}"""
}
]
response = self.client.chat.completions.create(
model="gpt-4",
messages=messages,
temperature=0.2,
max_tokens=1000
)
return response.choices[0].message.content
except Exception as e:
return f"I apologize, but I encountered an error synthesizing the answer: {str(e)}"
def format_sources_for_db(self, sources):
"""Format sources for database storage"""
if not sources:
return None
sources_data = []
for doc in sources:
sources_data.append({
'title': doc.metadata.get('title'),
'source': doc.metadata.get('source'),
'timestamp': datetime.utcnow().isoformat()
})
return json.dumps(sources_data)
def respond(self, message, history, doctor_name: str, request: gr.Request = None):
"""Main response function for the chatbot"""
try:
# Don't reuse sessions - ensure we're using the current session ID
if not hasattr(self, 'current_session_id') or not self.current_session_id:
self.current_session_id = self.db.create_session(doctor_name)
# Log user message
self.db.log_message(
session_id=self.current_session_id,
message=message,
is_user=True
)
# Rest of your existing respond method remains the same...
message_type = self.detect_message_type(message)
if message_type == "basic":
response = self.get_chatgpt_response(message, history)
self.db.log_message(
session_id=self.current_session_id,
message=response,
is_user=False
)
return response
retriever_response = self.qa_system.ask(message)
if "error" in retriever_response:
response = self.get_chatgpt_response(message, history)
self.db.log_message(
session_id=self.current_session_id,
message=response,
is_user=False
)
return response
if retriever_response.get("context") and len(retriever_response["context"]) > 0:
synthesized_answer = self.synthesize_answer(
message,
retriever_response["context"],
history
)
sources = self.format_sources(retriever_response["context"])
final_response = synthesized_answer + sources
self.db.log_message(
session_id=self.current_session_id,
message=final_response,
is_user=False,
sources=self.format_sources_for_db(retriever_response["context"])
)
return final_response
else:
response = self.get_chatgpt_response(message, history)
fallback_response = "I couldn't find specific information about this in my knowledge base, but here's what I can tell you:\n\n" + response
self.db.log_message(
session_id=self.current_session_id,
message=fallback_response,
is_user=False
)
return fallback_response
except Exception as e:
error_message = f"I apologize, but I encountered an error: {str(e)}"
if self.current_session_id:
self.db.log_message(
session_id=self.current_session_id,
message=error_message,
is_user=False
)
return error_message
def format_sources(self, sources):
"""Format sources into a readable string"""
if not sources:
return ""
formatted = "\n\n📚 Sources Used:\n"
seen_sources = set()
for doc in sources:
source_id = (doc.metadata.get('title', ''), doc.metadata.get('source', ''))
if source_id not in seen_sources:
seen_sources.add(source_id)
formatted += f"\n• {doc.metadata.get('title', 'Untitled')}\n"
if doc.metadata.get('source'):
formatted += f" Link: {doc.metadata['source']}\n"
return formatted
def transcribe_audio(self, audio_path):
"""Transcribe audio using OpenAI Whisper"""
try:
with open(audio_path, "rb") as audio_file:
transcript = self.client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
return transcript.text
except Exception as e:
print(f"Error transcribing audio: {str(e)}")
return None
def process_audio_input(self, audio_path, history, doctor_name):
"""Process audio input and return both text and audio response"""
try:
# Transcribe the audio
transcription = self.transcribe_audio(audio_path)
if not transcription:
return "Sorry, I couldn't understand the audio.", None
# Get text response
text_response = self.respond(transcription, history, doctor_name)
# Convert response to speech
# audio_response = self.text_to_speech(text_response)
return text_response
except Exception as e:
return f"Error processing audio: {str(e)}"
def main():
med_chatbot = MedicalChatbot()
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# Medical Knowledge Assistant")
gr.Markdown("Ask me anything about medical topics using text or voice.")
session_state = gr.State()
doctor_state = gr.State()
# Doctor Name Input
with gr.Row():
doctor_name = gr.Textbox(
label="Doctor Name",
placeholder="Enter your name",
show_label=True,
container=True,
scale=2,
interactive=True
)
# Main Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=400)
# Text Input Area
with gr.Row():
text_input = gr.Textbox(
placeholder="Type your message here...",
scale=8
)
send_button = gr.Button("Send", scale=1)
# Audio Input Area
with gr.Row():
audio = gr.Audio(
sources=["microphone"],
type="filepath",
label="Voice Message",
interactive=True
)
# Audio Output Area
audio_output = gr.Audio(
label="AI Voice Response",
visible=True,
interactive=False
)
# Initialize session handler
def init_session(doctor, current_doctor):
if not doctor or doctor == current_doctor:
return None, current_doctor
return med_chatbot.db.create_session(doctor), doctor
# Text input handler
def on_text_submit(message, history, doctor, session_id, current_doctor):
if not session_id or doctor != current_doctor:
session_id, current_doctor = init_session(doctor, current_doctor)
med_chatbot.current_session_id = session_id
response = med_chatbot.respond(message, history, doctor)
history.append((message, response))
return "", history, None, session_id, current_doctor
# Audio input handler with numpy array
def on_audio_submit(audio_path, history, doctor, session_id, current_doctor):
try:
if audio_path is None:
return history, None, session_id, current_doctor
# Initialize session if needed
if not session_id or doctor != current_doctor:
session_id, current_doctor = init_session(doctor, current_doctor)
# Set current session
med_chatbot.current_session_id = session_id
# Transcribe the audio
transcription = med_chatbot.transcribe_audio(audio_path)
if not transcription:
return history, None, session_id, current_doctor
# Log the transcription as a user message in the database
med_chatbot.db.log_message(
session_id=session_id,
message=transcription,
is_user=True
)
# Append transcription to the chatbot history
history.append((f"🎤 {transcription}", None)) # User message, no AI response yet
# Process the transcription as a user query
ai_response = med_chatbot.respond(transcription, history, doctor)
# Append AI response to the chatbot history
history[-1] = (f"🎤 {transcription}", ai_response) # Update with AI response
# Log the AI response in the database
med_chatbot.db.log_message(
session_id=session_id,
message=ai_response,
is_user=False
)
return history, session_id, current_doctor
except Exception as e:
print(f"Error processing audio: {str(e)}")
return history, None, session_id, current_doctor
# Set up event handlers
doctor_name.submit(
fn=init_session,
inputs=[doctor_name, doctor_state],
outputs=[session_state, doctor_state]
)
send_button.click(
fn=on_text_submit,
inputs=[text_input, chatbot, doctor_name, session_state, doctor_state],
outputs=[text_input, chatbot, audio_output, session_state, doctor_state]
)
text_input.submit(
fn=on_text_submit,
inputs=[text_input, chatbot, doctor_name, session_state, doctor_state],
outputs=[text_input, chatbot, audio_output, session_state, doctor_state]
)
# Audio submission
audio.stop_recording(
fn=on_audio_submit,
inputs=[audio, chatbot, doctor_name, session_state, doctor_state],
outputs=[chatbot, session_state, doctor_state]
)
# Examples
gr.Examples(
examples=[
["Hello, how are you?", "Dr. Smith"],
["What are the common causes of iron deficiency anemia?", "Dr. Smith"],
["What are the latest treatments for type 2 diabetes?", "Dr. Smith"],
["Can you explain the relationship between diet and heart disease?", "Dr. Smith"]
],
inputs=[text_input, doctor_name]
)
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
)
if __name__ == "__main__":
main() |