laitkor's picture
Upload folder using huggingface_hub
6d63e5b verified
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import ctypes as ct
from functools import reduce # Required in Python 3
import itertools
import operator
from typing import Any, Dict, Optional, Tuple
import numpy as np
import torch
from torch import Tensor
from bitsandbytes.utils import pack_dict_to_tensor, unpack_tensor_to_dict
from .cextension import lib
# math.prod not compatible with python < 3.8
def prod(iterable):
return reduce(operator.mul, iterable, 1)
name2qmap = {}
if lib and lib.compiled_with_cuda:
"""C FUNCTIONS FOR OPTIMIZERS"""
str2optimizer32bit = {
"adam": (
lib.cadam32bit_grad_fp32,
lib.cadam32bit_grad_fp16,
lib.cadam32bit_grad_bf16,
),
"momentum": (
lib.cmomentum32bit_grad_32,
lib.cmomentum32bit_grad_16,
),
"rmsprop": (
lib.crmsprop32bit_grad_32,
lib.crmsprop32bit_grad_16,
),
"lion": (
lib.clion32bit_grad_fp32,
lib.clion32bit_grad_fp16,
lib.clion32bit_grad_bf16,
),
"adagrad": (
lib.cadagrad32bit_grad_32,
lib.cadagrad32bit_grad_16,
),
"lamb": (
lib.cadam32bit_grad_fp32,
lib.cadam32bit_grad_fp16,
lib.cadam32bit_grad_bf16,
),
"ademamix": (
lib.cademamix32bit_grad_fp32,
lib.cademamix32bit_grad_fp16,
lib.cademamix32bit_grad_bf16,
),
}
str2optimizer8bit = {
"adam": (
lib.cadam_static_8bit_grad_32,
lib.cadam_static_8bit_grad_16,
),
"momentum": (
lib.cmomentum_static_8bit_grad_32,
lib.cmomentum_static_8bit_grad_16,
),
"rmsprop": (
lib.crmsprop_static_8bit_grad_32,
lib.crmsprop_static_8bit_grad_16,
),
"lion": (
lib.clion_static_8bit_grad_32,
lib.clion_static_8bit_grad_16,
),
"lamb": (
lib.cadam_static_8bit_grad_32,
lib.cadam_static_8bit_grad_16,
),
"lars": (
lib.cmomentum_static_8bit_grad_32,
lib.cmomentum_static_8bit_grad_16,
),
}
str2optimizer8bit_blockwise = {
"adam": (
lib.cadam_8bit_blockwise_grad_fp32,
lib.cadam_8bit_blockwise_grad_fp16,
lib.cadam_8bit_blockwise_grad_bf16,
),
"momentum": (
lib.cmomentum_8bit_blockwise_grad_fp32,
lib.cmomentum_8bit_blockwise_grad_fp16,
lib.cmomentum_8bit_blockwise_grad_bf16,
),
"rmsprop": (
lib.crmsprop_8bit_blockwise_grad_fp32,
lib.crmsprop_8bit_blockwise_grad_fp16,
lib.crmsprop_8bit_blockwise_grad_bf16,
),
"lion": (
lib.clion_8bit_blockwise_grad_fp32,
lib.clion_8bit_blockwise_grad_fp16,
lib.clion_8bit_blockwise_grad_bf16,
),
"adagrad": (
lib.cadagrad_8bit_blockwise_grad_fp32,
lib.cadagrad_8bit_blockwise_grad_fp16,
lib.cadagrad_8bit_blockwise_grad_bf16,
),
"ademamix": (
lib.cademamix_8bit_blockwise_grad_fp32,
lib.cademamix_8bit_blockwise_grad_fp16,
lib.cademamix_8bit_blockwise_grad_bf16,
),
}
class GlobalPageManager:
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.paged_tensors = []
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def prefetch_all(self, to_cpu=False):
# assume the first added, will be the
# ones that are used first, so swap them in last
# in the case they are evicted again
for t in self.paged_tensors[::-1]:
prefetch_tensor(t, to_cpu)
class CUBLAS_Context:
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.context = {}
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def get_context(self, device):
if device.index not in self.context:
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
self.context[device.index] = ct.c_void_p(lib.get_context())
torch.cuda.set_device(prev_device)
return self.context[device.index]
class Cusparse_Context:
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.context = ct.c_void_p(lib.get_cusparse())
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
dtype2bytes = {}
dtype2bytes[torch.float32] = 4
dtype2bytes[torch.float16] = 2
dtype2bytes[torch.bfloat16] = 2
dtype2bytes[torch.uint8] = 1
dtype2bytes[torch.int8] = 1
FIRST_CUDA_DEVICE = torch.device("cuda", index=0)
def get_paged(*shape, dtype=torch.float32, device=FIRST_CUDA_DEVICE):
num_bytes = dtype2bytes[dtype] * prod(shape)
cuda_ptr = lib.cget_managed_ptr(ct.c_size_t(num_bytes))
c_ptr = ct.cast(cuda_ptr, ct.POINTER(ct.c_int))
new_array = np.ctypeslib.as_array(c_ptr, shape=shape)
out = torch.frombuffer(new_array, dtype=dtype, count=prod(shape)).view(shape)
out.is_paged = True
out.page_deviceid = device.index
return out
def prefetch_tensor(A, to_cpu=False):
assert A.is_paged, "Only paged tensors can be prefetched!"
if to_cpu:
deviceid = -1
else:
deviceid = A.page_deviceid
num_bytes = dtype2bytes[A.dtype] * A.numel()
lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid))
def elementwise_func(func_name, A, B, value, prefetch=True):
func = None
if A.dtype == torch.float32:
func = getattr(lib, f"c{func_name}_fp32", None)
cvalue = ct.c_float(value)
elif A.dtype == torch.uint8:
func = getattr(lib, f"c{func_name}_uint8", None)
cvalue = ct.c_uint8(value)
if func is None:
raise NotImplementedError(f"Function not implemented: {func_name}")
is_managed = getattr(A, "is_managed", False)
if is_managed and prefetch:
prefetch_tensor(A)
if B is not None:
prefetch_tensor(B)
func(get_ptr(A), get_ptr(B), cvalue, ct.c_int64(A.numel()))
if A.is_paged or B.is_paged:
# paged function are fully asynchronous
# if we return from this function, we want to the tensor
# to be in the correct state, that is the final state after the
# operation occurred. So we synchronize.
torch.cuda.synchronize()
def fill(A, value, device=None, prefetch=True):
elementwise_func("fill", A, None, value)
def arange(A, device=None):
elementwise_func("arange", A, None, 0)
def _mul(A, B, device=None):
elementwise_func("_mul", A, B, 0)
def create_linear_map(signed=True, total_bits=8, add_zero=True):
sign = -1.0 if signed else 0.0
total_values = 2**total_bits
if add_zero or total_bits < 8:
# add a zero
# since we simulate less bits by having zeros in the data type, we
# we need to center the quantization around zero and as such lose
# a single value
total_values = 2**total_bits if not signed else 2**total_bits - 1
values = torch.linspace(sign, 1.0, total_values)
gap = 256 - values.numel()
if gap == 0:
return values
else:
l = values.numel() // 2 # noqa: E741
return torch.Tensor(values[:l].tolist() + [0] * gap + values[l:].tolist())
def create_normal_map(offset=0.9677083, use_extra_value=True):
try:
from scipy.stats import norm
except ImportError as ie:
raise ImportError(
"Scipy is required for `create_normal_map`. Install `bitsandbytes` with the `[test]` extra.",
) from ie
if use_extra_value:
# one more positive value, this is an asymmetric type
v1 = norm.ppf(torch.linspace(offset, 0.5, 9)[:-1]).tolist()
v2 = [0] * (256 - 15) ## we have 15 non-zero values in this data type
v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
else:
v1 = norm.ppf(torch.linspace(offset, 0.5, 8)[:-1]).tolist()
v2 = [0] * (256 - 14) ## we have 14 non-zero values in this data type
v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
v = v1 + v2 + v3
values = torch.Tensor(v)
values = values.sort().values
values /= values.max()
assert values.numel() == 256
return values
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
e = exponent_bits
p = precision_bits
has_sign = 1 if signed else 0
assert e + p == total_bits - has_sign
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
for i, val in enumerate(range(-(2 ** (exponent_bits - has_sign)), 2 ** (exponent_bits - has_sign), 1)):
evalues.append(2**val)
values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
# for ev in evalues:
bias = 2 ** (exponent_bits - 1)
for evalue in range(2 ** (exponent_bits)):
for bit_pattern in lst:
value = 1 if evalue != 0 else 0
for i, pval in enumerate(list(bit_pattern)):
value += pval * (2 ** -(i + 1))
if evalue == 0:
# subnormals
value = value * 2**-(bias)
else:
# normals
value = value * 2 ** -(evalue - bias - 1)
values.append(value)
if signed:
values.append(-value)
assert len(values) == 2**total_bits
values.sort()
if total_bits < 8:
gap = 256 - len(values)
for i in range(gap):
values.append(0)
values.sort()
code = torch.Tensor(values)
code /= code.max()
return code
def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
"""
Creates the dynamic quantiztion map.
The dynamic data type is made up of a dynamic exponent and
fraction. As the exponent increase from 0 to -7 the number
of bits available for the fraction shrinks.
This is a generalization of the dynamic type where a certain
number of the bits and be reserved for the linear quantization
region (the fraction). n determines the maximum number of
exponent bits.
For more details see
(8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
"""
data = []
# these are additional items that come from the case
# where all the exponent bits are zero and no
# indicator bit is present
non_sign_bits = total_bits - (1 if signed else 1)
additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
for i in range(max_exponent_bits):
fraction_items = int(
2 ** (i + non_sign_bits - max_exponent_bits) + 1
if signed
else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1,
)
boundaries = torch.linspace(0.1, 1, fraction_items)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
if signed:
data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
if additional_items > 0:
boundaries = torch.linspace(0.1, 1, additional_items + 1)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
if signed:
data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
data.append(0)
data.append(1.0)
assert len(data) == 2**total_bits
gap = 256 - len(data)
for i in range(gap):
data.append(0)
data.sort()
return torch.tensor(data)
def create_quantile_map(A, total_bits=8):
q = estimate_quantiles(A, num_quantiles=2**total_bits - 1)
q = q.tolist()
q.append(0)
gap = 256 - len(q)
for i in range(gap):
q.append(0)
q.sort()
q = Tensor(q)
q = q / q.abs().max()
return q
def get_special_format_str():
if not torch.cuda.is_available():
return "col_turing"
major, _minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
if major == 8:
return "col_ampere"
return "col_turing"
def is_on_gpu(tensors):
on_gpu = True
gpu_ids = set()
for t in tensors:
if t is None:
continue # NULL pointers are fine
is_paged = getattr(t, "is_paged", False)
on_gpu &= t.device.type == "cuda" or is_paged
if not is_paged:
gpu_ids.add(t.device.index)
if not on_gpu:
raise TypeError(
f"All input tensors need to be on the same GPU, but found some tensors to not be on a GPU:\n {[(t.shape, t.device) for t in tensors]}",
)
if len(gpu_ids) > 1:
raise TypeError(
f"Input tensors need to be on the same GPU, but found the following tensor and device combinations:\n {[(t.shape, t.device) for t in tensors]}",
)
return on_gpu
def get_tensor_stream(tensor: Tensor) -> torch.cuda.Stream:
stream = torch.cuda.current_stream(tensor.device)
return stream
def get_ptr(A: Optional[Tensor]) -> Optional[ct.c_void_p]:
"""
Get the ctypes pointer from a PyTorch Tensor.
Parameters
----------
A : torch.tensor
The PyTorch tensor.
Returns
-------
ctypes.c_void_p
"""
if A is None:
return None
else:
return ct.c_void_p(A.data.data_ptr())
def pre_call(device):
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
return prev_device
def post_call(prev_device):
torch.cuda.set_device(prev_device)
def get_transform_func(dtype, orderA, orderOut, transpose=False):
name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}'
if not hasattr(lib, name):
print(name)
raise ValueError(
f"Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}",
)
else:
return getattr(lib, name)
def get_transform_buffer(shape, dtype, device, to_order, from_order="row", transpose=False):
# init_func = torch.empty
init_func = torch.zeros
dims = len(shape)
if dims == 2:
rows = shape[0]
elif dims == 3:
rows = shape[0] * shape[1]
cols = shape[-1]
state = (shape, to_order)
if transpose:
# swap dims
tmp = rows
rows = cols
cols = tmp
state = (shape[::-1], to_order)
if to_order == "row" or to_order == "col":
return init_func(shape, dtype=dtype, device=device), state
elif to_order == "col32":
# blocks of 32 columns (padded)
cols = 32 * ((cols + 31) // 32)
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == "col_turing":
# blocks of 32 columns and 8 rows
cols = 32 * ((cols + 31) // 32)
rows = 8 * ((rows + 7) // 8)
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == "col_ampere":
# blocks of 32 columns and 32 rows
cols = 32 * ((cols + 31) // 32)
rows = 32 * ((rows + 31) // 32)
return init_func((rows, cols), dtype=dtype, device=device), state
else:
raise NotImplementedError(f"To_order not supported: {to_order}")
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1])
else:
new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
def estimate_quantiles(
A: Tensor,
out: Optional[torch.Tensor] = None,
offset: float = 1 / 512,
num_quantiles=256,
) -> Tensor:
"""
Estimates 256 equidistant quantiles on the input tensor eCDF.
Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
and the extreme quantiles close to 0 and 1 have high variance / large estimation
errors. These large errors can be avoided by using the offset variable which trims
the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
usually has a much lower error but is not a minimum entropy encoding. Given an offset
of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.
Parameters
----------
A : torch.Tensor
The input tensor. Any shape.
out : torch.Tensor
Tensor with the 256 estimated quantiles.
offset : float
The offset for the first and last quantile from 0 and 1. Default: 1/(2*num_quantiles)
num_quantiles : int
The number of equally spaced quantiles.
Returns
-------
torch.Tensor:
The 256 quantiles in float32 datatype.
"""
if A.numel() < 256:
raise NotImplementedError(
f"Quantile estimation needs at least 256 values in the Tensor, but Tensor had only {A.numel()} values.",
)
if num_quantiles > 256:
raise NotImplementedError(
f"Currently only a maximum of 256 equally spaced quantiles are supported, but the argument num_quantiles={num_quantiles}",
)
if num_quantiles < 256 and offset == 1 / (512):
# override default arguments
offset = 1 / (2 * num_quantiles)
if out is None:
out = torch.zeros((256,), dtype=torch.float32, device=A.device)
is_on_gpu([A, out])
device = pre_call(A.device)
if A.dtype == torch.float32:
lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
else:
raise NotImplementedError(f"Not supported data type {A.dtype}")
post_call(device)
if num_quantiles < 256:
step = round(256 / num_quantiles)
idx = torch.linspace(0, 255, num_quantiles).long().to(A.device)
out = out[idx]
return out
class QuantState:
"""container for quantization state components to work with Params4bit and similar classes"""
valid_quant_types = ("fp4", "nf4")
valid_qs_type_keys = [f"bitsandbytes__{x}" for x in valid_quant_types]
valid_qs_keys = [
"absmax",
"quant_map",
"nested_absmax",
"nested_quant_map",
"quant_state",
"quant_type",
"blocksize",
"dtype",
"shape",
"nested_blocksize",
"nested_dtype",
"nested_offset",
]
def __init__(
self,
absmax,
shape=None,
code=None,
blocksize=None,
quant_type=None,
dtype=None,
offset=None,
state2=None,
):
self.absmax = absmax
self.shape = shape
self.code = code
self.dtype = dtype
self.blocksize = blocksize
self.quant_type = quant_type
self.offset = offset
self.state2 = state2
self.nested = state2 is not None
def __get_item__(self, idx):
"""
ensures compatibility with older quant state scheme with nested lists.
assumes the following layout:
state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type]
state2 = [absmax, input_shape, A.dtype, blocksize, None, quant_type]
"""
if self.nested:
list_repr = [
self.absmax,
self.shape,
self.dtype,
self.blocksize,
[self.offset, self.state2],
self.quant_type,
]
else:
list_repr = [self.absmax, self.shape, self.dtype, self.blocksize, None, self.quant_type]
return list_repr[idx]
@classmethod
def from_dict(cls, qs_dict: Dict[str, Any], device: torch.device) -> "QuantState":
"""
unpacks components of state_dict into QuantState
where necessary, convert into strings, torch.dtype, ints, etc.
qs_dict: based on state_dict, with only relevant keys, striped of prefixes.
item with key `quant_state.bitsandbytes__[nf4/fp4]` may contain minor and non-tensor quant state items.
"""
# unpacking tensor with non-tensor components
qs_key = [k for k, v in qs_dict.items() if "quant_state" in k and isinstance(v, torch.Tensor)]
if not len(qs_key) and "quant_type" not in qs_dict:
raise ValueError("Expected packed or unpacked quant_state items, found neither")
elif len(qs_key) != 1 or qs_key[0].split(".")[-1] not in cls.valid_qs_type_keys:
raise ValueError(
f"There should be exactly one `quant_state` item with ending from {cls.valid_qs_type_keys}.\nDetected {qs_key}.",
)
# unpacking minor and non-tensor quant state items if necessary
if len(qs_key) == 1:
first_qs_key = qs_key[0]
qs_dict.update(unpack_tensor_to_dict(qs_dict.pop(first_qs_key)))
qs_dict = {k.split(".")[-1]: v for k, v in qs_dict.items()} # strip prefixes
assert set(qs_dict.keys()).issubset(cls.valid_qs_keys)
if "nested_absmax" in qs_dict:
offset = torch.tensor(float(qs_dict["nested_offset"])).to(device)
state2 = cls(
absmax=qs_dict["nested_absmax"].to(device),
blocksize=qs_dict["nested_blocksize"],
code=qs_dict["nested_quant_map"].to(device),
dtype=getattr(torch, qs_dict["nested_dtype"]),
)
else:
offset, state2 = None, None
quant_state = cls(
quant_type=qs_dict["quant_type"],
absmax=qs_dict["absmax"].to(device),
blocksize=qs_dict["blocksize"],
code=qs_dict["quant_map"].to(device),
dtype=getattr(torch, qs_dict["dtype"]),
shape=torch.Size(qs_dict["shape"]) if qs_dict["shape"] is not None else None,
offset=offset,
state2=state2,
)
return quant_state
def as_dict(self, packed=False):
"""
returns dict of tensors and strings to use in serialization via _save_to_state_dict()
param: packed -- returns dict[str, torch.Tensor] for state_dict fit for safetensors saving
"""
qs_dict = {
"quant_type": self.quant_type,
"absmax": self.absmax,
"blocksize": self.blocksize,
"quant_map": self.code,
"dtype": str(self.dtype).strip("torch."),
"shape": tuple(self.shape),
}
if self.nested:
qs_dict.update(
{
"nested_absmax": self.state2.absmax,
"nested_blocksize": self.state2.blocksize,
"nested_quant_map": self.state2.code.clone(), # un-shared to avoid restoring it after shared tensors are removed by safetensors
"nested_dtype": str(self.state2.dtype).strip("torch."),
"nested_offset": self.offset.item(),
},
)
if not packed:
return qs_dict
# packed format allows serialization of non-tensor components, critical for saving in safetensors format
qs_packed_dict = {k: v for k, v in qs_dict.items() if isinstance(v, torch.Tensor)}
non_tensor_dict = {k: v for k, v in qs_dict.items() if not isinstance(v, torch.Tensor)}
qs_packed_dict["quant_state." + "bitsandbytes__" + self.quant_type] = pack_dict_to_tensor(non_tensor_dict)
return qs_packed_dict
def to(self, device):
# make sure the quantization state is on the right device
self.absmax = self.absmax.to(device)
if self.nested:
self.offset = self.offset.to(device)
self.state2.absmax = self.state2.absmax.to(device)
self.state2.code = self.state2.code.to(device)
def __eq__(self, other):
if not isinstance(other, QuantState):
return False
return (
torch.allclose(self.absmax, other.absmax, atol=1e-6)
and self.shape == other.shape
and torch.allclose(self.code, other.code, atol=1e-6)
and self.dtype == other.dtype
and self.blocksize == other.blocksize
and self.quant_type == other.quant_type
and (
self.offset == other.offset
if self.offset is not None and other.offset is not None
else self.offset is other.offset
)
and (
self.state2 == other.state2
if self.state2 is not None and other.state2 is not None
else self.state2 is other.state2
)
)
def quantize_blockwise(
A: Tensor,
code: Optional[torch.Tensor] = None,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize=4096,
nested=False,
) -> Tuple[Tensor, QuantState]:
"""
Quantize tensor A in blocks of size 4096 values.
Quantizes tensor A by dividing it into blocks of 4096 values.
Then the absolute maximum value within these blocks is calculated
for the non-linear quantization.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
absmax : torch.Tensor
The absmax values.
out : torch.Tensor
The output tensor (8-bit).
Returns
-------
torch.Tensor:
The 8-bit tensor.
tuple(torch.Tensor, torch.Tensor):
The quantization state to undo the quantization.
"""
if code is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
if absmax is None:
n = A.numel()
blocks = n // blocksize
blocks += 1 if n % blocksize > 0 else 0
absmax = torch.zeros((blocks,), device=A.device, dtype=torch.float32)
if out is None:
out = torch.zeros_like(A, dtype=torch.uint8)
if A.device.type != "cpu":
assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
cblocksize = ct.c_int32(blocksize)
prev_device = pre_call(A.device)
code = code.to(A.device)
is_on_gpu([code, A, out, absmax])
if A.dtype == torch.float32:
lib.cquantize_blockwise_fp32(
get_ptr(code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
cblocksize,
ct.c_int(A.numel()),
)
elif A.dtype == torch.float16:
lib.cquantize_blockwise_fp16(
get_ptr(code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
cblocksize,
ct.c_int(A.numel()),
)
elif A.dtype == torch.bfloat16:
lib.cquantize_blockwise_bf16(
get_ptr(code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
cblocksize,
ct.c_int(A.numel()),
)
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
else:
# cpu
code = code.cpu()
lib.cquantize_blockwise_cpu_fp32(
get_ptr(code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_longlong(blocksize),
ct.c_longlong(A.numel()),
)
if nested:
offset = absmax.mean()
absmax -= offset
qabsmax, state2 = quantize_blockwise(absmax, blocksize=blocksize, nested=False)
quant_state = QuantState(
absmax=qabsmax,
code=code,
blocksize=blocksize,
dtype=A.dtype,
offset=offset,
state2=state2,
)
else:
quant_state = QuantState(absmax=absmax, code=code, blocksize=blocksize, dtype=A.dtype)
return out, quant_state
def dequantize_blockwise(
A: Tensor,
quant_state: Optional[QuantState] = None,
absmax: Optional[torch.Tensor] = None,
code: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize: int = 4096,
nested=False,
) -> Tensor:
"""
Dequantizes blockwise quantized values.
Dequantizes the tensor A with maximum absolute values absmax in
blocks of size 4096.
Parameters
----------
A : torch.Tensor
The input 8-bit tensor.
quant_state : QuantState
Object with code, absmax and other quantization state components.
absmax : torch.Tensor
The absmax values.
code : torch.Tensor
The quantization map.
out : torch.Tensor
Dequantized output tensor (default: float32)
Returns
-------
torch.Tensor:
Dequantized tensor (default: float32)
"""
assert quant_state is not None or absmax is not None
if code is None and quant_state is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
if quant_state is None:
quant_state = QuantState(absmax=absmax, code=code, blocksize=blocksize, dtype=torch.float32)
absmax = quant_state.absmax
if quant_state.nested:
absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2)
absmax += quant_state.offset
if absmax.dtype != torch.float32:
absmax = absmax.float()
if out is None:
out = torch.empty(A.shape, dtype=quant_state.dtype, device=A.device)
if A.device.type != "cpu":
device = pre_call(A.device)
code = quant_state.code.to(A.device)
if quant_state.blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
raise ValueError(
f"The blockwise of {quant_state.blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]",
)
is_on_gpu([A, absmax, out])
stream = get_tensor_stream(A)
if out.dtype == torch.float32:
lib.cdequantize_blockwise_fp32(
get_ptr(quant_state.code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(A.numel()),
stream, # Used the _as_parameter_ attribute of torch.cuda.Stream, Similarly for the following
)
elif out.dtype == torch.float16:
lib.cdequantize_blockwise_fp16(
get_ptr(quant_state.code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(A.numel()),
stream,
)
elif out.dtype == torch.bfloat16:
lib.cdequantize_blockwise_bf16(
get_ptr(quant_state.code),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(A.numel()),
stream,
)
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
else:
code = quant_state.code.cpu()
lib.cdequantize_blockwise_cpu_fp32(
get_ptr(code),
get_ptr(A),
get_ptr(quant_state.absmax),
get_ptr(out),
ct.c_longlong(quant_state.blocksize),
ct.c_longlong(A.numel()),
)
return out
def get_4bit_type(typename, device=None, blocksize=64):
if device is None:
device = "cuda"
data = None
if typename == "nf4":
""" Implements the NF4 data type.
Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that
is normalized into the range [-1, 1].
For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314)
Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in
the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236.
"""
data = [
-1.0,
-0.6961928009986877,
-0.5250730514526367,
-0.39491748809814453,
-0.28444138169288635,
-0.18477343022823334,
-0.09105003625154495,
0.0,
0.07958029955625534,
0.16093020141124725,
0.24611230194568634,
0.33791524171829224,
0.44070982933044434,
0.5626170039176941,
0.7229568362236023,
1.0,
]
elif typename == "fp4":
# 0b000 = 0
# 0b001 = 0.0625
# 0b010 = 8
# 0b011 = 12
# 0b100 = 4
# 0b101 = 6
# 0b110 = 2
# 0b111 = 3
# can also be created with bnb.functional.create_fp8_map(signed=True, exponent_bits=2, precision_bits=1, total_bits=4)
data = [0, 0.0625, 8.0, 12.0, 4.0, 6.0, 2.0, 3.0, -0, -0.0625, -8.0, -12.0, -4.0, -6.0, -2.0, -3.0]
elif typename == "int4":
data = [7, 6, 5, 4, 3, 2, 1, 0, -0, -1, -2, -3, -4, -5, -6, -7]
elif typename == "af4":
# Taken from: NF4 Isn't Information Theoretically Optimal (and that's Good)
# https://arxiv.org/abs/2306.06965
if blocksize == 64:
data = [
-1.0,
-0.69441008,
-0.51243739,
-0.3736951,
-0.25607552,
-0.14982478,
-0.04934812,
0.0,
0.04273164,
0.12934483,
0.21961274,
0.31675666,
0.42563882,
0.55496234,
0.72424863,
1.0,
][::-1]
else:
raise NotImplementedError("4-bit AbnormalFloats currently only support blocksize 64.")
if data is None:
raise NotImplementedError(f"Typename {typename} not supported")
data = torch.tensor(data, device=device)
data.div_(data.abs().max())
assert data.numel() == 16
return data
def quantize_fp4(
A: Tensor,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize=64,
compress_statistics=False,
quant_storage=torch.uint8,
):
return quantize_4bit(A, absmax, out, blocksize, compress_statistics, "fp4", quant_storage)
def quantize_nf4(
A: Tensor,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize=64,
compress_statistics=False,
quant_storage=torch.uint8,
):
return quantize_4bit(A, absmax, out, blocksize, compress_statistics, "nf4", quant_storage)
def quantize_4bit(
A: Tensor,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize=64,
compress_statistics=False,
quant_type="fp4",
quant_storage=torch.uint8,
) -> Tuple[Tensor, QuantState]:
"""
Quantize tensor A in blocks of 4-bit values.
Quantizes tensor A by dividing it into blocks which are independently quantized to FP4.
Parameters
----------
A : torch.Tensor
The input tensor.
absmax : torch.Tensor
The absmax values.
out : torch.Tensor
The output tensor.
blocksize : int
The blocksize used in quantization.
quant_type : str
The 4-bit quantization data type {fp4, nf4}
Returns
-------
torch.Tensor:
Tensor with packed 4-bit values.
tuple(torch.Tensor, torch.Size, torch.dtype, int):
The quantization state to undo the quantization.
"""
if A.device.type != "cuda":
raise NotImplementedError(f"Device type not supported for FP4 quantization: {A.device.type}")
if quant_type not in ["fp4", "nf4"]:
raise NotImplementedError(f"4-bit quantization data type {quant_type} is not implemented.")
n = A.numel()
input_shape = A.shape
if absmax is None:
blocks = n // blocksize
blocks += 1 if n % blocksize > 0 else 0
absmax = torch.zeros((blocks,), device=A.device, dtype=torch.float32)
if out is None:
mod = dtype2bytes[quant_storage] * 2
out = torch.zeros(((n + 1) // mod, 1), dtype=quant_storage, device=A.device)
assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
prev_device = pre_call(A.device)
is_on_gpu([A, out, absmax])
if A.dtype == torch.float32:
if quant_type == "fp4":
lib.cquantize_blockwise_fp32_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
else:
lib.cquantize_blockwise_fp32_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
elif A.dtype == torch.float16:
if quant_type == "fp4":
lib.cquantize_blockwise_fp16_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
else:
lib.cquantize_blockwise_fp16_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
elif A.dtype == torch.bfloat16:
if quant_type == "fp4":
lib.cquantize_blockwise_bf16_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
else:
lib.cquantize_blockwise_bf16_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int32(blocksize),
ct.c_int(n),
)
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
code = get_4bit_type(quant_type, device=A.device)
if compress_statistics:
offset = absmax.mean()
absmax -= offset
qabsmax, state2 = quantize_blockwise(absmax, blocksize=256)
del absmax
state = QuantState(
absmax=qabsmax,
shape=input_shape,
dtype=A.dtype,
blocksize=blocksize,
code=code,
quant_type=quant_type,
offset=offset,
state2=state2,
)
else:
state = QuantState(
absmax=absmax,
shape=input_shape,
dtype=A.dtype,
blocksize=blocksize,
code=code,
quant_type=quant_type,
)
return out, state
def dequantize_fp4(
A: Tensor,
quant_state: Optional[QuantState] = None,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize: int = 64,
) -> Tensor:
return dequantize_4bit(A, quant_state, absmax, out, blocksize, "fp4")
def dequantize_nf4(
A: Tensor,
quant_state: Optional[QuantState] = None,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize: int = 64,
) -> Tensor:
return dequantize_4bit(A, quant_state, absmax, out, blocksize, "nf4")
def dequantize_4bit(
A: Tensor,
quant_state: Optional[QuantState] = None,
absmax: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
blocksize: int = 64,
quant_type="fp4",
) -> Tensor:
"""
Dequantizes FP4 blockwise quantized values.
Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize.
Parameters
----------
A : torch.Tensor
The input tensor (packed 4-bit values).
quant_state : QuantState
object with quantisation stats, incl. absmax values, original tensor shape and original dtype.
absmax : torch.Tensor
The absmax values.
out : torch.Tensor
Dequantized output tensor.
blocksize : int
The blocksize used in quantization.
quant_type : str
The 4-bit quantization data type {fp4, nf4}
Returns
-------
torch.Tensor:
Dequantized tensor.
"""
if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
raise ValueError(
f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]",
)
if quant_type not in ["fp4", "nf4"]:
raise NotImplementedError(f"4-bit quantization data type {quant_type} is not implemented.")
if quant_state is None:
assert absmax is not None and out is not None
quant_state = QuantState(
absmax=absmax,
shape=out.shape,
dtype=out.dtype,
blocksize=blocksize,
quant_type=quant_type,
)
else:
absmax = quant_state.absmax
if quant_state.nested:
absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2)
absmax += quant_state.offset
if absmax.dtype != torch.float32:
absmax = absmax.float()
if out is None:
out = torch.empty(quant_state.shape, dtype=quant_state.dtype, device=A.device)
n = out.numel()
device = pre_call(A.device)
is_on_gpu([A, absmax, out])
stream = get_tensor_stream(A)
if out.dtype == torch.float32:
if quant_state.quant_type == "fp4":
lib.cdequantize_blockwise_fp32_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
else:
lib.cdequantize_blockwise_fp32_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
elif out.dtype == torch.float16:
if quant_state.quant_type == "fp4":
lib.cdequantize_blockwise_fp16_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
else:
lib.cdequantize_blockwise_fp16_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
elif out.dtype == torch.bfloat16:
if quant_state.quant_type == "fp4":
lib.cdequantize_blockwise_bf16_fp4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
else:
lib.cdequantize_blockwise_bf16_nf4(
get_ptr(None),
get_ptr(A),
get_ptr(absmax),
get_ptr(out),
ct.c_int(quant_state.blocksize),
ct.c_int(n),
stream,
)
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
is_transposed = True if A.shape[0] == 1 else False
if is_transposed:
return out.t()
else:
return out
def quantize(
A: Tensor,
code: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
if code is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
code = code.to(A.device)
absmax = torch.abs(A).max()
if absmax.dtype != torch.float32:
absmax = absmax.float()
inp = A / absmax
out = quantize_no_absmax(inp, code, out)
return out, (absmax, code)
def dequantize(
A: Tensor,
state: Optional[Tuple[Tensor, Tensor]] = None,
absmax: Optional[torch.Tensor] = None,
code: Optional[torch.Tensor] = None,
out: Optional[torch.Tensor] = None,
) -> Tensor:
assert state is not None or absmax is not None
if code is None and state is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
code = code.to(A.device)
if state is None:
state = (absmax, code)
out = dequantize_no_absmax(A, state[1], out)
return out * state[0]
def quantize_no_absmax(A: Tensor, code: Tensor, out: Optional[torch.Tensor] = None) -> Tensor:
"""
Quantizes input tensor to 8-bit.
Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
`out` using the quantization map `code`.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor, optional
The output tensor. Needs to be of type byte.
Returns
-------
torch.Tensor:
Quantized 8-bit tensor.
"""
prev_device = pre_call(A.device)
if out is None:
out = torch.zeros_like(A, dtype=torch.uint8)
is_on_gpu([A, out])
lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
post_call(prev_device)
return out
def dequantize_no_absmax(A: Tensor, code: Tensor, out: Optional[torch.Tensor] = None) -> Tensor:
"""
Dequantizes the 8-bit tensor to 32-bit.
Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
the quantization map `code`.
Parameters
----------
A : torch.Tensor
The 8-bit input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor
The 32-bit output tensor.
Returns
-------
torch.Tensor:
32-bit output tensor.
"""
prev_device = pre_call(A.device)
if out is None:
out = torch.zeros_like(A, dtype=torch.float32)
is_on_gpu([code, A, out])
stream = get_tensor_stream(A)
lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()), stream)
post_call(prev_device)
return out
def optimizer_update_32bit(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
beta1: float,
eps: float,
step: int,
lr: float,
state2: Optional[torch.Tensor] = None,
beta2: float = 0.0,
beta3: float = 0.0,
alpha: float = 0.0,
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
unorm_vec: Optional[torch.Tensor] = None,
max_unorm: float = 0.0,
skip_zeros=False,
) -> None:
"""
Performs an inplace optimizer update with one or two optimizer states.
Universal optimizer update for 32-bit state and 32/16-bit gradients/weights.
Parameters
----------
optimizer_name : str
The name of the optimizer: {adam}.
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Optimizer state 1.
beta1 : float
Optimizer beta1.
eps : float
Optimizer epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
state2 : torch.Tensor
Optimizer state 2.
beta2 : float
Optimizer beta2.
beta3 : float
Optimizer beta3.
alpha : float
Optimizer alpha.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
skip_zeros : bool
Whether to skip zero-valued gradients or not (default: False).
"""
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
optim_func = None
if g.dtype == torch.float32:
optim_func = str2optimizer32bit[optimizer_name][0]
elif g.dtype == torch.float16:
optim_func = str2optimizer32bit[optimizer_name][1]
elif g.dtype == torch.bfloat16 and len(str2optimizer32bit[optimizer_name]) == 3:
optim_func = str2optimizer32bit[optimizer_name][2]
else:
raise ValueError(
f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}",
)
is_on_gpu([g, p, state1, state2, unorm_vec])
prev_device = pre_call(g.device)
optim_func(
get_ptr(g),
get_ptr(p),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(beta3),
ct.c_float(alpha),
ct.c_float(eps),
ct.c_float(weight_decay),
ct.c_int32(step),
ct.c_float(lr),
ct.c_float(gnorm_scale),
ct.c_bool(skip_zeros),
ct.c_int32(g.numel()),
)
post_call(prev_device)
def optimizer_update_8bit(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
state2: Optional[torch.Tensor],
beta1: float,
beta2: float,
eps: float,
step: int,
lr: float,
qmap1: Tensor,
qmap2: Optional[torch.Tensor],
max1: Tensor,
max2: Optional[torch.Tensor],
new_max1: Tensor,
new_max2: Optional[torch.Tensor],
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
unorm_vec: Optional[torch.Tensor] = None,
max_unorm: float = 0.0,
) -> None:
"""
Performs an inplace Adam update.
Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights.
Uses AdamW formulation if weight decay > 0.0.
Parameters
----------
optimizer_name : str
The name of the optimizer. Choices {adam, momentum}
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Adam state 1.
state2 : torch.Tensor
Adam state 2.
beta1 : float
Adam beta1.
beta2 : float
Adam beta2.
eps : float
Adam epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
qmap1 : torch.Tensor
Quantization map for first Adam state.
qmap2 : torch.Tensor
Quantization map for second Adam state.
max1 : torch.Tensor
Max value for first Adam state update.
max2 : torch.Tensor
Max value for second Adam state update.
new_max1 : torch.Tensor
Max value for the next Adam update of the first state.
new_max2 : torch.Tensor
Max value for the next Adam update of the second state.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
"""
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
prev_device = pre_call(g.device)
is_on_gpu([g, p, state1, state2, unorm_vec, qmap1, qmap2, max1, max2, new_max1, new_max2])
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][0](
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(max1),
get_ptr(max2),
get_ptr(new_max1),
get_ptr(new_max2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_int32(g.numel()),
)
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][1](
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(max1),
get_ptr(max2),
get_ptr(new_max1),
get_ptr(new_max2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_int32(g.numel()),
)
else:
raise ValueError(
f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}",
)
post_call(prev_device)
def optimizer_update_8bit_blockwise(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
state2: Optional[torch.Tensor],
beta1: float,
beta2: float,
beta3: float,
alpha: float,
eps: float,
step: int,
lr: float,
qmap1: Tensor,
qmap2: Optional[torch.Tensor],
absmax1: Tensor,
absmax2: Optional[torch.Tensor],
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
skip_zeros=False,
) -> None:
optim_func = None
prev_device = pre_call(g.device)
is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2])
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
optim_func = str2optimizer8bit_blockwise[optimizer_name][0]
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
optim_func = str2optimizer8bit_blockwise[optimizer_name][1]
elif (
g.dtype == torch.bfloat16
and state1.dtype == torch.uint8
and len(str2optimizer8bit_blockwise[optimizer_name]) == 3
):
optim_func = str2optimizer8bit_blockwise[optimizer_name][2]
else:
raise ValueError(
f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}",
)
post_call(prev_device)
is_on_gpu([p, g, state1, state2, qmap1, qmap2, absmax1, absmax2])
prev_device = pre_call(g.device)
optim_func(
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(beta3),
ct.c_float(alpha),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(absmax1),
get_ptr(absmax2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_bool(skip_zeros),
ct.c_int32(g.numel()),
)
post_call(prev_device)
def percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5):
"""Applies percentile clipping
grad: torch.Tensor
The gradient tensor.
gnorm_vec: torch.Tensor
Vector of gradient norms. 100 elements expected.
step: int
The current optimiation steps (number of past gradient norms).
"""
prev_device = pre_call(grad.device)
is_on_gpu([grad, gnorm_vec])
if grad.dtype == torch.float32:
lib.cpercentile_clipping_g32(
get_ptr(grad),
get_ptr(gnorm_vec),
ct.c_int32(step),
ct.c_int32(grad.numel()),
)
elif grad.dtype == torch.float16:
lib.cpercentile_clipping_g16(
get_ptr(grad),
get_ptr(gnorm_vec),
ct.c_int32(step),
ct.c_int32(grad.numel()),
)
else:
raise ValueError(f"Gradient type {grad.dtype} not supported!")
post_call(prev_device)
current_gnorm = torch.sqrt(gnorm_vec[step % 100])
vals, idx = torch.sort(gnorm_vec)
clip_value = torch.sqrt(vals[percentile])
gnorm_scale = 1.0
if current_gnorm > clip_value:
gnorm_scale = clip_value / current_gnorm
return current_gnorm, clip_value, gnorm_scale
def histogram_scatter_add_2d(histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor):
assert len(histogram.shape) == 2
assert histogram.dtype == torch.float32
assert source.dtype == torch.float32
assert index1.dtype == torch.int32
assert index2.dtype == torch.int32
assert histogram.device.type == "cuda"
assert index1.device.type == "cuda"
assert index2.device.type == "cuda"
assert source.device.type == "cuda"
maxdim1 = ct.c_int32(histogram.shape[0])
n = ct.c_int32(index1.numel())
is_on_gpu([histogram, index1, index2, source])
lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8):
if not torch.cuda.is_initialized():
torch.cuda.init()
if A.dtype != expected_type or B.dtype != expected_type:
raise TypeError(f"Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}")
sA = A.shape
sB = B.shape
tA = transposed_A
tB = transposed_B
correct = True
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB and A.shape[1] != B.shape[0]:
correct = False
elif tA and not tB and A.shape[0] != B.shape[0]:
correct = False
elif tA and tB and A.shape[0] != B.shape[1]:
correct = False
elif not tA and tB and A.shape[1] != B.shape[1]:
correct = False
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB and A.shape[2] != B.shape[0]:
correct = False
elif tA and not tB and A.shape[1] != B.shape[0]:
correct = False
elif tA and tB and A.shape[1] != B.shape[1]:
correct = False
elif not tA and tB and A.shape[2] != B.shape[1]:
correct = False
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB and A.shape[2] != B.shape[1]:
correct = False
elif tA and not tB and A.shape[1] != B.shape[1]:
correct = False
elif tA and tB and A.shape[1] != B.shape[2]:
correct = False
elif not tA and tB and A.shape[2] != B.shape[2]:
correct = False
if out is not None:
sout = out.shape
# special case common in backprop
if not correct and len(sA) == 3 and len(sB) == 3:
if sout[0] == sA[2] and sout[1] == sB[2] and sA[0] == sB[0] and sA[1] == sB[1]:
correct = True
else:
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB:
sout = (sA[0], sB[1])
elif tA and tB:
sout = (sA[1], sB[0])
elif tA and not tB:
sout = (sA[1], sB[1])
elif not tA and tB:
sout = (sA[0], sB[0])
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB:
sout = (sA[0], sA[1], sB[1])
elif tA and tB:
sout = (sA[0], sA[2], sB[0])
elif tA and not tB:
sout = (sA[0], sA[2], sB[1])
elif not tA and tB:
sout = (sA[0], sA[1], sB[0])
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB:
sout = (sA[0], sA[1], sB[2])
elif tA and tB:
sout = (sA[0], sA[2], sB[1])
elif tA and not tB:
sout = (sA[0], sA[2], sB[2])
elif not tA and tB:
sout = (sA[0], sA[1], sB[1])
if not correct:
raise ValueError(
f"Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}.",
)
return sout
def gemv_4bit(
A: Tensor,
B: Tensor,
out: Optional[torch.Tensor] = None,
transposed_A=False,
transposed_B=False,
state=None,
):
prev_device = pre_call(A.device)
# sout = check_matmul(A, B, out, transposed_A, transposed_B, expected_type=A.dtype)
if state is None:
raise ValueError("state cannot None. gem_4bit( ) requires the state from quantize_4bit( )")
if A.numel() != A.shape[-1]:
raise ValueError(
'Dimensions of A are invalid. Must be a vector with the leading dimensions of "1", e.g. [1, 1, 2048]',
)
Bshape = state.shape
bout = Bshape[0]
absmax = state.absmax
if state.nested:
absmax = dequantize_blockwise(state.absmax, state.state2)
absmax += state.offset
if out is None:
if len(A.shape) == 3:
out = torch.empty(size=(A.shape[0], A.shape[1], bout), dtype=A.dtype, device=A.device)
else:
out = torch.empty(size=(A.shape[0], bout), dtype=A.dtype, device=A.device)
n = 1
m = Bshape[0]
k = Bshape[1]
lda = Bshape[0]
ldc = Bshape[0]
ldb = (A.shape[-1] + 1) // 2
is_on_gpu([B, A, out, absmax, state.code])
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
lda = ct.c_int32(lda)
ldb = ct.c_int32(ldb)
ldc = ct.c_int32(ldc)
stream = get_tensor_stream(A)
if B.dtype in [torch.uint8, torch.bfloat16, torch.float16, torch.float32]:
if A.dtype == torch.float16:
lib.cgemm_4bit_inference_naive_fp16(
m,
n,
k,
get_ptr(A),
get_ptr(B),
get_ptr(absmax),
get_ptr(state.code),
get_ptr(out),
lda,
ldb,
ldc,
ct.c_int32(state.blocksize),
stream,
)
elif A.dtype == torch.bfloat16:
lib.cgemm_4bit_inference_naive_bf16(
m,
n,
k,
get_ptr(A),
get_ptr(B),
get_ptr(absmax),
get_ptr(state.code),
get_ptr(out),
lda,
ldb,
ldc,
ct.c_int32(state.blocksize),
stream,
)
elif A.dtype == torch.float32:
lib.cgemm_4bit_inference_naive_fp32(
m,
n,
k,
get_ptr(A),
get_ptr(B),
get_ptr(absmax),
get_ptr(state.code),
get_ptr(out),
lda,
ldb,
ldc,
ct.c_int32(state.blocksize),
stream,
)
else:
raise NotImplementedError(f"Matmul not implemented for data type {A.dtype}")
else:
raise NotImplementedError(f"Matmul not implemented for data type {A.dtype}")
post_call(prev_device)
return out
def igemm(
A: Tensor,
B: Tensor,
out: Optional[torch.Tensor] = None,
transposed_A=False,
transposed_B=False,
):
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None:
out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
if len(A.shape) == 3 and len(B.shape) == 3:
if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]:
return batched_igemm(A, B, out)
sA = A.shape
sB = B.shape
if transposed_A and len(sA) == 2:
sA = (sA[1], sA[0])
elif transposed_A and len(sA) == 3:
sA = (sA[0], sA[2], sA[0])
if transposed_B and len(sB) == 2:
sB = (sB[1], sB[0])
elif transposed_B and len(sB) == 3:
sB = (sB[0], sB[2], sB[0])
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [m, k] @ [k, n] = [m, n]
# row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
# column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
if len(sB) == 2:
if B.stride()[0] == B.shape[1]:
transposed_B = False
elif B.stride()[1] == B.shape[0]:
transposed_B = True
if len(A.shape) == 2:
if A.stride()[0] == A.shape[1]:
transposed_A = False
elif A.stride()[1] == A.shape[0]:
transposed_A = True
else:
if A.stride()[1] == A.shape[2]:
transposed_A = False
elif A.stride()[2] == A.shape[1]:
transposed_A = True
if len(sA) == 2:
n = sA[0]
ldb = A.stride()[1 if transposed_A else 0]
elif len(sA) == 3 and len(sB) == 2:
n = sA[0] * sA[1]
ldb = sA[2]
m = sB[1]
k = sB[0]
lda = B.stride()[(1 if transposed_B else 0)]
ldc = sB[1]
elif len(sB) == 3:
# special case
assert len(sA) == 3
if not (sA[0] == sB[0] and sA[1] == sB[1]):
raise ValueError(
f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}",
)
transposed_A = True
transposed_B = False
m = sB[2]
n = sA[2]
k = sB[0] * sB[1]
lda = m
ldb = sA[2]
ldc = m
ptr = CUBLAS_Context.get_instance().get_context(A.device)
# B^T @ A^T = C^T
# [km, nk -> mn]
is_on_gpu([B, A, out])
lib.cigemm(
ptr,
ct.c_bool(transposed_B),
ct.c_bool(transposed_A),
ct.c_int32(m),
ct.c_int32(n),
ct.c_int32(k),
get_ptr(B),
get_ptr(A),
get_ptr(out),
ct.c_int32(lda),
ct.c_int32(ldb),
ct.c_int32(ldc),
)
return out
def batched_igemm(
A: Tensor,
B: Tensor,
out: Optional[torch.Tensor] = None,
transposed_A=False,
transposed_B=False,
):
if not len(A.shape) == 3 or not len(B.shape) == 3:
raise ValueError(f"Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}")
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None:
out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
if B.is_contiguous():
lda = B.stride()[1]
transposed_A = False
else:
s = B.stride()
if s[0] != B.shape[0]:
B = B.contiguous()
lda = B.stride()[1]
elif s[2] == B.shape[1]:
transposed_A = True
lda = B.stride()[2]
else:
if s[2] == 1:
B = B.contiguous()
lda = B.stride()[1]
elif s[1] == 1:
B = B.contiguous()
lda = B.stride()[1]
else:
B = B.contiguous()
lda = B.stride()[1]
if A.is_contiguous():
ldb = A.stride()[1]
transposed_B = False
else:
s = A.stride()
if s[0] != A.shape[0]:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
elif s[2] == A.shape[1]:
ldb = A.stride()[2]
transposed_B = True
else:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m]
num_batch = A.shape[0]
n = A.shape[1]
m = B.shape[2]
k = B.shape[1]
ldc = m
strideA = B.shape[1] * B.shape[2]
strideB = A.shape[1] * A.shape[2]
strideC = A.shape[1] * B.shape[2]
ptr = CUBLAS_Context.get_instance().get_context(A.device)
is_on_gpu([B, A, out])
lib.cbatched_igemm(
ptr,
ct.c_bool(transposed_B),
ct.c_bool(transposed_A),
ct.c_int32(m),
ct.c_int32(n),
ct.c_int32(k),
get_ptr(B),
get_ptr(A),
get_ptr(out),
ct.c_int32(lda),
ct.c_int32(ldb),
ct.c_int32(ldc),
ct.c_long(strideA),
ct.c_long(strideB),
ct.c_long(strideC),
ct.c_uint32(num_batch),
)
return out
def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
shapeA = SA[0]
shapeB = SB[0]
dimsA = len(shapeA)
dimsB = len(shapeB)
assert dimsB == 2, "Only two dimensional matrices are supported for argument B"
if dimsA == 2:
m = shapeA[0]
elif dimsA == 3:
m = shapeA[0] * shapeA[1]
rows = n = shapeB[0]
assert prod(list(shapeA)) > 0, f"Input tensor dimensions need to be > 0: {shapeA}"
# if the tensor is empty, return a transformed empty tensor with the right dimensions
if shapeA[0] == 0 and dimsA == 2:
return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16)
elif shapeA[1] == 0 and dimsA == 3:
return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16)
if dimsA == 2 and out is None:
out, Sout = get_transform_buffer((shapeA[0], shapeB[0]), dtype, A.device, "col32", "row")
elif dimsA == 3 and out is None:
out, Sout = get_transform_buffer((shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, "col32", "row")
assert dimsB != 3, "len(B.shape)==3 not supported"
assert A.device.type == "cuda"
assert B.device.type == "cuda"
assert A.dtype == torch.int8
assert B.dtype == torch.int8
assert out.dtype == dtype
assert SA[1] == "col32"
assert SB[1] in ["col_turing", "col_ampere"]
assert Sout[1] == "col32"
assert (
shapeA[-1] == shapeB[-1]
), f"Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}"
formatB = SB[1]
prev_device = A.device
torch.cuda.set_device(A.device)
ptr = CUBLAS_Context.get_instance().get_context(A.device)
ptrA = get_ptr(A)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
k = shapeA[-1]
lda = ct.c_int32(m * 32)
if formatB == "col_turing":
# turing: tiles with rows filled up to multiple of 8 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows + 7) // 8) * 8 * 32)
else:
# ampere: tiles with rows filled up to multiple of 32 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows + 31) // 32) * 32 * 32)
ldc = ct.c_int32(m * 32)
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
has_error = 0
ptrRowScale = get_ptr(None)
is_on_gpu([A, B, out])
if formatB == "col_turing":
if dtype == torch.int32:
has_error = lib.cigemmlt_turing_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
else:
has_error = lib.cigemmlt_turing_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
elif formatB == "col_ampere":
if dtype == torch.int32:
has_error = lib.cigemmlt_ampere_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
else:
has_error = lib.cigemmlt_ampere_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
if has_error == 100: # `ERR_NOT_IMPLEMENTED` is defined as 100 in `ops.cu`
raise NotImplementedError("igemmlt not available (probably built with NO_CUBLASLT)")
if has_error:
print(f"A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}")
raise Exception("cublasLt ran into an error!")
torch.cuda.set_device(prev_device)
return out, Sout
def mm_dequant(A, quant_state, row_stats, col_stats, out=None, new_row_stats=None, new_col_stats=None, bias=None):
assert A.dtype == torch.int32
if bias is not None:
assert bias.dtype == torch.float16
out_shape = quant_state[0]
if len(out_shape) == 3:
out_shape = (out_shape[0] * out_shape[1], out_shape[2])
if out is None:
out = torch.empty(out_shape, dtype=torch.float16, device=A.device)
if new_row_stats is None:
new_row_stats = torch.empty(out_shape[0], dtype=torch.float32, device=A.device)
if new_col_stats is None:
new_col_stats = torch.empty(out_shape[1], dtype=torch.float32, device=A.device)
assert new_row_stats.shape[0] == row_stats.shape[0], f"{new_row_stats.shape} vs {row_stats.shape}"
assert new_col_stats.shape[0] == col_stats.shape[0], f"{new_col_stats.shape} vs {col_stats.shape}"
prev_device = pre_call(A.device)
ptrA = get_ptr(A)
ptrOut = get_ptr(out)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNewRowStats = get_ptr(new_row_stats)
ptrNewColStats = get_ptr(new_col_stats)
ptrBias = get_ptr(bias)
numRows = ct.c_int32(out_shape[0])
numCols = ct.c_int32(out_shape[1])
is_on_gpu([A, row_stats, col_stats, out, new_row_stats, new_col_stats, bias])
lib.cdequant_mm_int32_fp16(
ptrA,
ptrRowStats,
ptrColStats,
ptrOut,
ptrNewRowStats,
ptrNewColStats,
ptrBias,
numRows,
numCols,
)
post_call(prev_device)
return out
def get_colrow_absmax(A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0):
assert A.dtype == torch.float16
device = A.device
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0] * A.shape[1]
else:
rows = A.shape[0]
col_tiles = (cols + 255) // 256
tiled_rows = ((rows + 15) // 16) * 16
if row_stats is None:
row_stats = torch.empty((rows,), dtype=torch.float32, device=device).fill_(-50000.0)
if col_stats is None:
col_stats = torch.empty((cols,), dtype=torch.float32, device=device).fill_(-50000.0)
if nnz_block_ptr is None and threshold > 0.0:
nnz_block_ptr = torch.zeros(((tiled_rows * col_tiles) + 1,), dtype=torch.int32, device=device)
ptrA = get_ptr(A)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNnzrows = get_ptr(nnz_block_ptr)
rows = ct.c_int32(rows)
cols = ct.c_int32(cols)
prev_device = pre_call(A.device)
is_on_gpu([A, row_stats, col_stats, nnz_block_ptr])
lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols)
post_call(prev_device)
if threshold > 0.0:
nnz_block_ptr.cumsum_(0)
return row_stats, col_stats, nnz_block_ptr
class COOSparseTensor:
def __init__(self, rows, cols, nnz, rowidx, colidx, values):
assert rowidx.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colidx.numel() == nnz
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowidx = rowidx
self.colidx = colidx
self.values = values
class CSRSparseTensor:
def __init__(self, rows, cols, nnz, rowptr, colidx, values):
assert rowptr.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert colidx.numel() == nnz
assert rowptr.numel() == rows + 1
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowptr = rowptr
self.colidx = colidx
self.values = values
class CSCSparseTensor:
def __init__(self, rows, cols, nnz, colptr, rowidx, values):
assert colptr.dtype == torch.int32
assert rowidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colptr.numel() == cols + 1
self.rows = rows
self.cols = cols
self.nnz = nnz
self.colptr = colptr
self.rowidx = rowidx
self.values = values
def coo2csr(cooA):
values, counts = torch.unique(cooA.rowidx, return_counts=True)
values.add_(1)
rowptr = torch.zeros((cooA.rows + 1,), dtype=torch.int32, device=cooA.rowidx.device)
rowptr.scatter_(index=values.long(), src=counts.int(), dim=0)
rowptr.cumsum_(0)
return CSRSparseTensor(cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values)
def coo2csc(cooA):
val, col2rowidx = torch.sort(cooA.colidx)
rowidx = cooA.rowidx[col2rowidx]
values = cooA.values[col2rowidx]
colvalues, counts = torch.unique(val, return_counts=True)
colvalues.add_(1)
colptr = torch.zeros((cooA.cols + 1,), dtype=torch.int32, device=cooA.colidx.device)
colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0)
colptr.cumsum_(0)
return CSCSparseTensor(cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values)
def coo_zeros(rows, cols, nnz, device, dtype=torch.half):
rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
colidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
values = torch.zeros((nnz,), dtype=dtype, device=device)
return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values)
def double_quant(A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0):
device = A.device
assert A.dtype == torch.half
assert device.type == "cuda"
prev_device = pre_call(A.device)
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0] * A.shape[1]
else:
rows = A.shape[0]
if row_stats is None or col_stats is None:
row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(A, threshold=threshold)
if out_col is None:
out_col = torch.zeros(A.shape, device=device, dtype=torch.int8)
if out_row is None:
out_row = torch.zeros(A.shape, device=device, dtype=torch.int8)
coo_tensor = None
ptrA = get_ptr(A)
ptrColStats = get_ptr(col_stats)
ptrRowStats = get_ptr(row_stats)
ptrOutCol = get_ptr(out_col)
ptrOutRow = get_ptr(out_row)
is_on_gpu([A, col_stats, row_stats, out_col, out_row])
if threshold > 0.0:
nnz = nnz_row_ptr[-1].item()
if nnz > 0:
coo_tensor = coo_zeros(A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device)
ptrRowIdx = get_ptr(coo_tensor.rowidx)
ptrColIdx = get_ptr(coo_tensor.colidx)
ptrVal = get_ptr(coo_tensor.values)
ptrRowPtr = get_ptr(nnz_row_ptr)
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
ptrRowIdx,
ptrColIdx,
ptrVal,
ptrRowPtr,
ct.c_float(threshold),
ct.c_int32(rows),
ct.c_int32(cols),
)
val, idx = torch.sort(coo_tensor.rowidx)
coo_tensor.rowidx = val
coo_tensor.colidx = coo_tensor.colidx[idx]
coo_tensor.values = coo_tensor.values[idx]
else:
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
None,
None,
None,
None,
ct.c_float(0.0),
ct.c_int32(rows),
ct.c_int32(cols),
)
else:
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
None,
None,
None,
None,
ct.c_float(threshold),
ct.c_int32(rows),
ct.c_int32(cols),
)
post_call(prev_device)
return out_row, out_col, row_stats, col_stats, coo_tensor
def transform(A, to_order, from_order="row", out=None, transpose=False, state=None, ld=None):
prev_device = pre_call(A.device)
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
else:
new_state = (state[0], to_order) # (shape, order)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
else:
dim1 = ct.c_int32(shape[0] * shape[1])
dim2 = ct.c_int32(shape[2])
is_on_gpu([A, out])
if to_order == "col32":
if transpose:
lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "col_turing":
if transpose:
lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "col_ampere":
if transpose:
lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "row":
if from_order == "col_turing":
lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
elif from_order == "col_ampere":
lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
else:
raise NotImplementedError(f"Transform function not implemented: From {from_order} to {to_order}")
post_call(prev_device)
return out, new_state
def spmm_coo(cooA, B, out=None):
if out is None:
out = torch.empty((cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype)
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0]
transposed_B = False if B.is_contiguous() else True
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
ptr = Cusparse_Context.get_instance().context
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out])
lib.cspmm_coo(
ptr,
ptrRowidx,
ptrColidx,
ptrValues,
cnnz,
crowsA,
ccolsA,
ccolsB,
cldb,
ptrB,
cldc,
ptrC,
ct.c_bool(transposed_B),
)
return out
def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None):
if out is None:
out = torch.zeros((cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype)
nnz = cooA.nnz
prev_device = pre_call(B.device)
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}"
transposed_B = False if B.is_contiguous() else True
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
values, counts = torch.unique(cooA.rowidx, return_counts=True)
offset = counts.cumsum(0).int()
max_count, max_idx = torch.sort(counts, descending=True)
max_idx = max_idx.int()
max_count = max_count.int()
assert max_count[0] <= 32, f"Current max count per row is 8 but found {max_count[0]}."
assert B.dtype in [torch.float16, torch.int8]
ptrOffset = get_ptr(offset)
ptrMaxCount = get_ptr(max_count)
ptrMaxIdx = get_ptr(max_idx)
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
ptrDequantStats = get_ptr(dequant_stats)
cnnz_rows = ct.c_int32(counts.numel())
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
crowsB = ct.c_int32(B.shape[1])
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats])
if B.dtype == torch.float16:
lib.cspmm_coo_very_sparse_naive_fp16(
ptrMaxCount,
ptrMaxIdx,
ptrOffset,
ptrRowidx,
ptrColidx,
ptrValues,
ptrB,
ptrC,
ptrDequantStats,
cnnz_rows,
cnnz,
crowsA,
crowsB,
ccolsB,
)
elif B.dtype == torch.int8:
lib.cspmm_coo_very_sparse_naive_int8(
ptrMaxCount,
ptrMaxIdx,
ptrOffset,
ptrRowidx,
ptrColidx,
ptrValues,
ptrB,
ptrC,
ptrDequantStats,
cnnz_rows,
cnnz,
crowsA,
crowsB,
ccolsB,
)
# else: assertion error
post_call(prev_device)
return out
C = 127.0
def vectorwise_quant(x, dim=1, quant_type="vector"):
if quant_type == "linear":
max1 = torch.abs(x).max().float()
xq = torch.round(x / max1 * 127).to(torch.int8)
return xq, max1
elif quant_type in ["vector", "row"]:
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
xq = torch.round(x * (C / max1)).to(torch.int8)
return xq, max1
elif quant_type == "zeropoint":
dtype = x.dtype
x = x.float()
dyna = x.max() - x.min()
if dyna == 0:
dyna = 1
qx = 255.0 / dyna
minx = x.min()
zpx = torch.round(minx * qx)
x = torch.round(qx * x - zpx) + zpx
return x, qx
elif quant_type in ["vector-zeropoint", "row-zeropoint"]:
dtype = x.dtype
x = x.float()
dyna = torch.amax(x, dim=dim, keepdim=True) - torch.amin(x, dim=dim, keepdim=True)
dyna[dyna == 0] = 1
qx = 255.0 / dyna
minx = torch.amin(x, dim=dim, keepdim=True)
zpx = torch.round(minx * qx)
x = torch.round(qx * x - zpx) + zpx
return x, qx
elif quant_type == "truncated-vector":
with torch.no_grad():
absx = torch.abs(x)
max1 = torch.amax(absx, dim=dim, keepdim=True)
max1 = max1 * 0.7
idx = absx > max1.expand_as(absx)
sign = torch.sign(x[idx])
x[idx] = max1.expand_as(absx)[idx] * sign
xq = torch.round(x / max1 * C).to(torch.int8)
return xq, max1
else:
return None
def vectorwise_dequant(xq, max1, quant_type="vector"):
if quant_type == "vector":
x = (xq / C * max1).to(torch.float32)
return x
else:
return None
def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type="vector"):
if quant_type == "linear":
norm = S1 * S2 / (C * C)
# double cast needed to prevent overflows
return (xq.float() * norm).to(dtype)
elif quant_type == "zeropoint":
norm = 1.0 / (S1 * S2)
return (xq.float() * norm).to(dtype)
elif quant_type == "row-zeropoint":
norm = 1.0 / (S1 * S2)
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= norm
else:
x *= norm
return x.to(dtype)
elif quant_type == "vector-zeropoint":
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= 1.0 / S1
else:
x *= 1.0 / S1
x *= 1.0 / S2.t()
return x.to(dtype)
elif quant_type == "row":
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= S1 * S2 / (C * C)
else:
x *= S1 * S2 / (C * C)
return x.to(dtype)
elif quant_type in ["truncated-vector", "vector"]:
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= S1 / C
else:
x *= S1 / C
x *= S2 / C
return x.to(dtype)
else:
return None
def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half):
offset = B.float().t().sum(0) * (SA[0] + SA[1])
x = xq.float()
if len(xq.shape) == 2 and len(SB.shape) == 3:
SB = SB.squeeze(0)
if len(SB.shape) == 2:
x *= SB.t() / 127
else:
x *= SB / 127
x *= SA[1] / 127
x += offset
return x.to(dtype)
def extract_outliers(A, SA, idx):
shapeA = SA[0]
formatA = SA[1]
assert formatA in ["col_turing", "col_ampere"]
assert A.device.type == "cuda"
out = torch.zeros((shapeA[0], idx.numel()), dtype=torch.int8, device=A.device)
idx_size = ct.c_int32(idx.numel())
rows = ct.c_int32(shapeA[0])
cols = ct.c_int32(shapeA[1])
ptrA = get_ptr(A)
ptrIdx = get_ptr(idx)
ptrOut = get_ptr(out)
prev_device = pre_call(A.device)
if formatA == "col_turing":
lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
elif formatA == "col_ampere":
lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
post_call(prev_device)
return out
def pipeline_test(A, batch_size):
out = torch.zeros_like(A)
lib.cpipeline_test(get_ptr(A), get_ptr(out), ct.c_size_t(A.numel()), ct.c_size_t(batch_size))
return out