Spaces:
Runtime error
Runtime error
Add application
Browse files- .gitignore +4 -0
- app.py +86 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
tmp/
|
3 |
+
|
4 |
+
gradio_cached_examples/
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from operator import add, sub
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from datasets import load_dataset
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
from pyparsing import Word, alphas, Char, ParseException
|
11 |
+
|
12 |
+
term = Word(alphas)
|
13 |
+
operator = Char("+ -")
|
14 |
+
|
15 |
+
expression = term + (operator + term)[...]
|
16 |
+
operations = {"+": add, "-": sub}
|
17 |
+
|
18 |
+
|
19 |
+
def parse_expression(input):
|
20 |
+
try:
|
21 |
+
return expression.parseString(input)
|
22 |
+
except ParseException as pe:
|
23 |
+
raise gr.Error(f"Syntax error at {pe.loc}: {pe.msg}")
|
24 |
+
|
25 |
+
|
26 |
+
def evaluate_expression(input):
|
27 |
+
# Skip every other item
|
28 |
+
words = input[::2]
|
29 |
+
operators = input[1::2]
|
30 |
+
|
31 |
+
result = word_to_vectors(words[0])
|
32 |
+
|
33 |
+
for operator, word in zip(operators, words[1:]):
|
34 |
+
result = operations[operator](result, word_to_vectors(word))
|
35 |
+
|
36 |
+
return result
|
37 |
+
|
38 |
+
|
39 |
+
dataset = load_dataset("karmiq/glove", split="train")
|
40 |
+
df = dataset.to_pandas()
|
41 |
+
|
42 |
+
all_words = df["word"].to_numpy()
|
43 |
+
all_vectors = np.array(df["embeddings"].to_list())
|
44 |
+
|
45 |
+
|
46 |
+
def word_to_vectors(word):
|
47 |
+
return df.loc[df["word"] == word].embeddings.to_numpy()[0]
|
48 |
+
|
49 |
+
|
50 |
+
def expression_to_vectors(input):
|
51 |
+
return evaluate_expression(parse_expression(input))
|
52 |
+
|
53 |
+
|
54 |
+
def get_results(expression):
|
55 |
+
vectors = expression_to_vectors(expression)
|
56 |
+
similarity_scores = cosine_similarity([vectors], all_vectors)[0]
|
57 |
+
top_indices = np.argsort(similarity_scores)[::-1]
|
58 |
+
return dict(
|
59 |
+
[
|
60 |
+
(all_words[i], similarity_scores[i])
|
61 |
+
for i in top_indices
|
62 |
+
if not all_words[i] in expression.split()
|
63 |
+
][:10]
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
examples = [
|
68 |
+
"king - man + woman",
|
69 |
+
"berlin - germany + france",
|
70 |
+
]
|
71 |
+
|
72 |
+
with gr.Blocks() as app:
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
input = gr.Textbox(value=examples[0], label="Expression")
|
76 |
+
with gr.Row():
|
77 |
+
btn = gr.Button("Run")
|
78 |
+
with gr.Row():
|
79 |
+
gr.Examples(examples, inputs=input)
|
80 |
+
|
81 |
+
with gr.Column():
|
82 |
+
output = gr.Label(label="Closest words")
|
83 |
+
|
84 |
+
btn.click(fn=get_results, inputs=input, outputs=output)
|
85 |
+
|
86 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
|
3 |
+
datasets
|
4 |
+
numpy
|
5 |
+
scikit-learn
|
6 |
+
|
7 |
+
pyparsing
|