Spaces:
Running
Running
jhj0517
commited on
Commit
·
ec41bf5
1
Parent(s):
75962fd
add base inference
Browse files
modules/insanely_fast_whisper_inference.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
from typing import BinaryIO, Union, Tuple, List
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from modules.whisper_base import WhisperBase
|
10 |
+
from modules.whisper_parameter import *
|
11 |
+
|
12 |
+
|
13 |
+
class InsanelyFastWhisperInference(WhisperBase):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__(
|
16 |
+
model_dir=os.path.join("models", "Whisper")
|
17 |
+
)
|
18 |
+
|
19 |
+
def transcribe(self,
|
20 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
21 |
+
progress: gr.Progress,
|
22 |
+
*whisper_params,
|
23 |
+
) -> Tuple[List[dict], float]:
|
24 |
+
"""
|
25 |
+
transcribe method for faster-whisper.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
30 |
+
Audio path or file binary or Audio numpy array
|
31 |
+
progress: gr.Progress
|
32 |
+
Indicator to show progress directly in gradio.
|
33 |
+
*whisper_params: tuple
|
34 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
35 |
+
|
36 |
+
Returns
|
37 |
+
----------
|
38 |
+
segments_result: List[dict]
|
39 |
+
list of dicts that includes start, end timestamps and transcribed text
|
40 |
+
elapsed_time: float
|
41 |
+
elapsed time for transcription
|
42 |
+
"""
|
43 |
+
start_time = time.time()
|
44 |
+
params = WhisperValues(*whisper_params)
|
45 |
+
|
46 |
+
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
47 |
+
self.update_model(params.model_size, params.compute_type, progress)
|
48 |
+
|
49 |
+
if params.lang == "Automatic Detection":
|
50 |
+
params.lang = None
|
51 |
+
|
52 |
+
def progress_callback(progress_value):
|
53 |
+
progress(progress_value, desc="Transcribing..")
|
54 |
+
|
55 |
+
segments_result = self.model.transcribe(audio=audio,
|
56 |
+
language=params.lang,
|
57 |
+
verbose=False,
|
58 |
+
beam_size=params.beam_size,
|
59 |
+
logprob_threshold=params.log_prob_threshold,
|
60 |
+
no_speech_threshold=params.no_speech_threshold,
|
61 |
+
task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
|
62 |
+
fp16=True if params.compute_type == "float16" else False,
|
63 |
+
best_of=params.best_of,
|
64 |
+
patience=params.patience,
|
65 |
+
temperature=params.temperature,
|
66 |
+
compression_ratio_threshold=params.compression_ratio_threshold,
|
67 |
+
progress_callback=progress_callback,)["segments"]
|
68 |
+
elapsed_time = time.time() - start_time
|
69 |
+
|
70 |
+
return segments_result, elapsed_time
|
71 |
+
|
72 |
+
def update_model(self,
|
73 |
+
model_size: str,
|
74 |
+
compute_type: str,
|
75 |
+
progress: gr.Progress,
|
76 |
+
):
|
77 |
+
"""
|
78 |
+
Update current model setting
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
model_size: str
|
83 |
+
Size of whisper model
|
84 |
+
compute_type: str
|
85 |
+
Compute type for transcription.
|
86 |
+
see more info : https://opennmt.net/CTranslate2/quantization.html
|
87 |
+
progress: gr.Progress
|
88 |
+
Indicator to show progress directly in gradio.
|
89 |
+
"""
|
90 |
+
progress(0, desc="Initializing Model..")
|
91 |
+
self.current_compute_type = compute_type
|
92 |
+
self.current_model_size = model_size
|
93 |
+
self.model = whisper.load_model(
|
94 |
+
name=model_size,
|
95 |
+
device=self.device,
|
96 |
+
download_root=self.model_dir
|
97 |
+
)
|