Spaces:
Running
Running
jhj0517
commited on
Commit
·
87272f5
1
Parent(s):
292ccb4
add `format_result()`
Browse files
modules/insanely_fast_whisper_inference.py
CHANGED
@@ -1,20 +1,24 @@
|
|
1 |
-
import whisper
|
2 |
-
import gradio as gr
|
3 |
-
import time
|
4 |
import os
|
5 |
-
|
6 |
import numpy as np
|
|
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
from modules.whisper_base import WhisperBase
|
10 |
from modules.whisper_parameter import *
|
|
|
11 |
|
12 |
|
13 |
class InsanelyFastWhisperInference(WhisperBase):
|
14 |
def __init__(self):
|
15 |
super().__init__(
|
16 |
-
model_dir=os.path.join("models", "Whisper")
|
17 |
)
|
|
|
18 |
|
19 |
def transcribe(self,
|
20 |
audio: Union[str, np.ndarray, torch.Tensor],
|
@@ -52,21 +56,14 @@ class InsanelyFastWhisperInference(WhisperBase):
|
|
52 |
def progress_callback(progress_value):
|
53 |
progress(progress_value, desc="Transcribing..")
|
54 |
|
55 |
-
segments_result = self.model
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
fp16=True if params.compute_type == "float16" else False,
|
63 |
-
best_of=params.best_of,
|
64 |
-
patience=params.patience,
|
65 |
-
temperature=params.temperature,
|
66 |
-
compression_ratio_threshold=params.compression_ratio_threshold,
|
67 |
-
progress_callback=progress_callback,)["segments"]
|
68 |
elapsed_time = time.time() - start_time
|
69 |
-
|
70 |
return segments_result, elapsed_time
|
71 |
|
72 |
def update_model(self,
|
@@ -90,8 +87,34 @@ class InsanelyFastWhisperInference(WhisperBase):
|
|
90 |
progress(0, desc="Initializing Model..")
|
91 |
self.current_compute_type = compute_type
|
92 |
self.current_model_size = model_size
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
device=self.device,
|
96 |
-
|
97 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
import numpy as np
|
4 |
+
from typing import BinaryIO, Union, Tuple, List
|
5 |
import torch
|
6 |
+
import transformers
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers.utils import is_flash_attn_2_available
|
9 |
+
import whisper
|
10 |
+
import gradio as gr
|
11 |
|
|
|
12 |
from modules.whisper_parameter import *
|
13 |
+
from modules.whisper_base import WhisperBase
|
14 |
|
15 |
|
16 |
class InsanelyFastWhisperInference(WhisperBase):
|
17 |
def __init__(self):
|
18 |
super().__init__(
|
19 |
+
model_dir=os.path.join("models", "Whisper", "insanely_fast_whisper")
|
20 |
)
|
21 |
+
self.available_compute_types = ["float16"]
|
22 |
|
23 |
def transcribe(self,
|
24 |
audio: Union[str, np.ndarray, torch.Tensor],
|
|
|
56 |
def progress_callback(progress_value):
|
57 |
progress(progress_value, desc="Transcribing..")
|
58 |
|
59 |
+
segments_result = self.model(
|
60 |
+
inputs=audio,
|
61 |
+
chunk_length_s=30,
|
62 |
+
batch_size=24,
|
63 |
+
return_timestamps=True,
|
64 |
+
)
|
65 |
+
segments_result = self.format_result(transcribed_result=segments_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
elapsed_time = time.time() - start_time
|
|
|
67 |
return segments_result, elapsed_time
|
68 |
|
69 |
def update_model(self,
|
|
|
87 |
progress(0, desc="Initializing Model..")
|
88 |
self.current_compute_type = compute_type
|
89 |
self.current_model_size = model_size
|
90 |
+
|
91 |
+
self.model = pipeline(
|
92 |
+
"automatic-speech-recognition",
|
93 |
+
model=os.path.join(self.model_dir, model_size),
|
94 |
+
torch_dtype=self.current_compute_type,
|
95 |
device=self.device,
|
96 |
+
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
|
97 |
+
)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def format_result(transcribed_result: dict) -> List[dict]:
|
101 |
+
"""
|
102 |
+
Format the transcription result of insanely_fast_whisper as the same with other implementation.
|
103 |
+
|
104 |
+
Parameters
|
105 |
+
----------
|
106 |
+
transcribed_result: dict
|
107 |
+
Transcription result of the insanely_fast_whisper
|
108 |
+
|
109 |
+
Returns
|
110 |
+
----------
|
111 |
+
result: List[dict]
|
112 |
+
Formatted result as the same with other implementation
|
113 |
+
"""
|
114 |
+
result = transcribed_result["chunks"]
|
115 |
+
for item in result:
|
116 |
+
start, end = item["timestamp"][0], item["timestamp"][1]
|
117 |
+
item["start"] = start
|
118 |
+
item["end"] = end
|
119 |
+
return result
|
120 |
+
|