Spaces:
Running
Running
Merge pull request #198 from jhj0517/feature/upgrade-faster-whisper
Browse files- app.py +0 -6
- modules/vad/silero_vad.py +14 -13
- modules/whisper/whisper_base.py +0 -1
- modules/whisper/whisper_parameter.py +7 -15
- requirements.txt +1 -1
app.py
CHANGED
@@ -115,7 +115,6 @@ class App:
|
|
115 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
116 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
117 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
118 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
119 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
120 |
with gr.Accordion("Diarization", open=False):
|
121 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
@@ -152,7 +151,6 @@ class App:
|
|
152 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
153 |
max_speech_duration_s=nb_max_speech_duration_s,
|
154 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
155 |
-
window_size_sample=nb_window_size_sample,
|
156 |
speech_pad_ms=nb_speech_pad_ms,
|
157 |
chunk_length_s=nb_chunk_length_s,
|
158 |
batch_size=nb_batch_size,
|
@@ -203,7 +201,6 @@ class App:
|
|
203 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
204 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
205 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
206 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
207 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
208 |
with gr.Accordion("Diarization", open=False):
|
209 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
@@ -241,7 +238,6 @@ class App:
|
|
241 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
242 |
max_speech_duration_s=nb_max_speech_duration_s,
|
243 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
244 |
-
window_size_sample=nb_window_size_sample,
|
245 |
speech_pad_ms=nb_speech_pad_ms,
|
246 |
chunk_length_s=nb_chunk_length_s,
|
247 |
batch_size=nb_batch_size,
|
@@ -284,7 +280,6 @@ class App:
|
|
284 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
285 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
286 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
287 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
288 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
289 |
with gr.Accordion("Diarization", open=False):
|
290 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
@@ -324,7 +319,6 @@ class App:
|
|
324 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
325 |
max_speech_duration_s=nb_max_speech_duration_s,
|
326 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
327 |
-
window_size_sample=nb_window_size_sample,
|
328 |
speech_pad_ms=nb_speech_pad_ms,
|
329 |
chunk_length_s=nb_chunk_length_s,
|
330 |
batch_size=nb_batch_size,
|
|
|
115 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
116 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
117 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
|
|
118 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
119 |
with gr.Accordion("Diarization", open=False):
|
120 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
|
151 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
152 |
max_speech_duration_s=nb_max_speech_duration_s,
|
153 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
|
|
154 |
speech_pad_ms=nb_speech_pad_ms,
|
155 |
chunk_length_s=nb_chunk_length_s,
|
156 |
batch_size=nb_batch_size,
|
|
|
201 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
202 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
203 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
|
|
204 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
205 |
with gr.Accordion("Diarization", open=False):
|
206 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
|
238 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
239 |
max_speech_duration_s=nb_max_speech_duration_s,
|
240 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
|
|
241 |
speech_pad_ms=nb_speech_pad_ms,
|
242 |
chunk_length_s=nb_chunk_length_s,
|
243 |
batch_size=nb_batch_size,
|
|
|
280 |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
281 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
282 |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
|
|
283 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
284 |
with gr.Accordion("Diarization", open=False):
|
285 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
|
319 |
min_speech_duration_ms=nb_min_speech_duration_ms,
|
320 |
max_speech_duration_s=nb_max_speech_duration_s,
|
321 |
min_silence_duration_ms=nb_min_silence_duration_ms,
|
|
|
322 |
speech_pad_ms=nb_speech_pad_ms,
|
323 |
chunk_length_s=nb_chunk_length_s,
|
324 |
batch_size=nb_batch_size,
|
modules/vad/silero_vad.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from faster_whisper.vad import VadOptions
|
2 |
import numpy as np
|
3 |
from typing import BinaryIO, Union, List, Optional
|
4 |
import warnings
|
@@ -9,6 +9,8 @@ import gradio as gr
|
|
9 |
class SileroVAD:
|
10 |
def __init__(self):
|
11 |
self.sampling_rate = 16000
|
|
|
|
|
12 |
|
13 |
def run(self,
|
14 |
audio: Union[str, BinaryIO, np.ndarray],
|
@@ -54,8 +56,8 @@ class SileroVAD:
|
|
54 |
|
55 |
return audio
|
56 |
|
57 |
-
@staticmethod
|
58 |
def get_speech_timestamps(
|
|
|
59 |
audio: np.ndarray,
|
60 |
vad_options: Optional[VadOptions] = None,
|
61 |
progress: gr.Progress = gr.Progress(),
|
@@ -72,6 +74,10 @@ class SileroVAD:
|
|
72 |
Returns:
|
73 |
List of dicts containing begin and end samples of each speech chunk.
|
74 |
"""
|
|
|
|
|
|
|
|
|
75 |
if vad_options is None:
|
76 |
vad_options = VadOptions(**kwargs)
|
77 |
|
@@ -79,15 +85,8 @@ class SileroVAD:
|
|
79 |
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
80 |
max_speech_duration_s = vad_options.max_speech_duration_s
|
81 |
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
82 |
-
window_size_samples =
|
83 |
speech_pad_ms = vad_options.speech_pad_ms
|
84 |
-
|
85 |
-
if window_size_samples not in [512, 1024, 1536]:
|
86 |
-
warnings.warn(
|
87 |
-
"Unusual window_size_samples! Supported window_size_samples:\n"
|
88 |
-
" - [512, 1024, 1536] for 16000 sampling_rate"
|
89 |
-
)
|
90 |
-
|
91 |
sampling_rate = 16000
|
92 |
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
93 |
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
@@ -101,8 +100,7 @@ class SileroVAD:
|
|
101 |
|
102 |
audio_length_samples = len(audio)
|
103 |
|
104 |
-
|
105 |
-
state = model.get_initial_state(batch_size=1)
|
106 |
|
107 |
speech_probs = []
|
108 |
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
@@ -111,7 +109,7 @@ class SileroVAD:
|
|
111 |
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
112 |
if len(chunk) < window_size_samples:
|
113 |
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
114 |
-
speech_prob, state = model(chunk, state, sampling_rate)
|
115 |
speech_probs.append(speech_prob)
|
116 |
|
117 |
triggered = False
|
@@ -207,6 +205,9 @@ class SileroVAD:
|
|
207 |
|
208 |
return speeches
|
209 |
|
|
|
|
|
|
|
210 |
@staticmethod
|
211 |
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
212 |
"""Collects and concatenates audio chunks."""
|
|
|
1 |
+
from faster_whisper.vad import VadOptions, get_vad_model
|
2 |
import numpy as np
|
3 |
from typing import BinaryIO, Union, List, Optional
|
4 |
import warnings
|
|
|
9 |
class SileroVAD:
|
10 |
def __init__(self):
|
11 |
self.sampling_rate = 16000
|
12 |
+
self.window_size_samples = 512
|
13 |
+
self.model = None
|
14 |
|
15 |
def run(self,
|
16 |
audio: Union[str, BinaryIO, np.ndarray],
|
|
|
56 |
|
57 |
return audio
|
58 |
|
|
|
59 |
def get_speech_timestamps(
|
60 |
+
self,
|
61 |
audio: np.ndarray,
|
62 |
vad_options: Optional[VadOptions] = None,
|
63 |
progress: gr.Progress = gr.Progress(),
|
|
|
74 |
Returns:
|
75 |
List of dicts containing begin and end samples of each speech chunk.
|
76 |
"""
|
77 |
+
|
78 |
+
if self.model is None:
|
79 |
+
self.update_model()
|
80 |
+
|
81 |
if vad_options is None:
|
82 |
vad_options = VadOptions(**kwargs)
|
83 |
|
|
|
85 |
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
86 |
max_speech_duration_s = vad_options.max_speech_duration_s
|
87 |
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
88 |
+
window_size_samples = self.window_size_samples
|
89 |
speech_pad_ms = vad_options.speech_pad_ms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
sampling_rate = 16000
|
91 |
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
92 |
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
|
100 |
|
101 |
audio_length_samples = len(audio)
|
102 |
|
103 |
+
state, context = self.model.get_initial_states(batch_size=1)
|
|
|
104 |
|
105 |
speech_probs = []
|
106 |
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
|
|
109 |
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
110 |
if len(chunk) < window_size_samples:
|
111 |
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
112 |
+
speech_prob, state, context = self.model(chunk, state, context, sampling_rate)
|
113 |
speech_probs.append(speech_prob)
|
114 |
|
115 |
triggered = False
|
|
|
205 |
|
206 |
return speeches
|
207 |
|
208 |
+
def update_model(self):
|
209 |
+
self.model = get_vad_model()
|
210 |
+
|
211 |
@staticmethod
|
212 |
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
213 |
"""Collects and concatenates audio chunks."""
|
modules/whisper/whisper_base.py
CHANGED
@@ -91,7 +91,6 @@ class WhisperBase(ABC):
|
|
91 |
min_speech_duration_ms=params.min_speech_duration_ms,
|
92 |
max_speech_duration_s=params.max_speech_duration_s,
|
93 |
min_silence_duration_ms=params.min_silence_duration_ms,
|
94 |
-
window_size_samples=params.window_size_samples,
|
95 |
speech_pad_ms=params.speech_pad_ms
|
96 |
)
|
97 |
self.vad.run(
|
|
|
91 |
min_speech_duration_ms=params.min_speech_duration_ms,
|
92 |
max_speech_duration_s=params.max_speech_duration_s,
|
93 |
min_silence_duration_ms=params.min_silence_duration_ms,
|
|
|
94 |
speech_pad_ms=params.speech_pad_ms
|
95 |
)
|
96 |
self.vad.run(
|
modules/whisper/whisper_parameter.py
CHANGED
@@ -23,7 +23,6 @@ class WhisperParameters:
|
|
23 |
min_speech_duration_ms: gr.Number
|
24 |
max_speech_duration_s: gr.Number
|
25 |
min_silence_duration_ms: gr.Number
|
26 |
-
window_size_sample: gr.Number
|
27 |
speech_pad_ms: gr.Number
|
28 |
chunk_length_s: gr.Number
|
29 |
batch_size: gr.Number
|
@@ -111,11 +110,6 @@ class WhisperParameters:
|
|
111 |
This parameter is related with Silero VAD. In the end of each speech chunk wait for min_silence_duration_ms
|
112 |
before separating it
|
113 |
|
114 |
-
window_size_samples: gr.Number
|
115 |
-
This parameter is related with Silero VAD. Audio chunks of window_size_samples size are fed to the silero VAD model.
|
116 |
-
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
117 |
-
Values other than these may affect model performance!!
|
118 |
-
|
119 |
speech_pad_ms: gr.Number
|
120 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
121 |
|
@@ -178,13 +172,12 @@ class WhisperParameters:
|
|
178 |
min_speech_duration_ms=args[15],
|
179 |
max_speech_duration_s=args[16],
|
180 |
min_silence_duration_ms=args[17],
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
diarization_device=args[24]
|
188 |
)
|
189 |
|
190 |
|
@@ -208,7 +201,6 @@ class WhisperValues:
|
|
208 |
min_speech_duration_ms: int
|
209 |
max_speech_duration_s: float
|
210 |
min_silence_duration_ms: int
|
211 |
-
window_size_samples: int
|
212 |
speech_pad_ms: int
|
213 |
chunk_length_s: int
|
214 |
batch_size: int
|
@@ -217,4 +209,4 @@ class WhisperValues:
|
|
217 |
diarization_device: str
|
218 |
"""
|
219 |
A data class to use Whisper parameters.
|
220 |
-
"""
|
|
|
23 |
min_speech_duration_ms: gr.Number
|
24 |
max_speech_duration_s: gr.Number
|
25 |
min_silence_duration_ms: gr.Number
|
|
|
26 |
speech_pad_ms: gr.Number
|
27 |
chunk_length_s: gr.Number
|
28 |
batch_size: gr.Number
|
|
|
110 |
This parameter is related with Silero VAD. In the end of each speech chunk wait for min_silence_duration_ms
|
111 |
before separating it
|
112 |
|
|
|
|
|
|
|
|
|
|
|
113 |
speech_pad_ms: gr.Number
|
114 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
115 |
|
|
|
172 |
min_speech_duration_ms=args[15],
|
173 |
max_speech_duration_s=args[16],
|
174 |
min_silence_duration_ms=args[17],
|
175 |
+
speech_pad_ms=args[18],
|
176 |
+
chunk_length_s=args[19],
|
177 |
+
batch_size=args[20],
|
178 |
+
is_diarize=args[21],
|
179 |
+
hf_token=args[22],
|
180 |
+
diarization_device=args[23]
|
|
|
181 |
)
|
182 |
|
183 |
|
|
|
201 |
min_speech_duration_ms: int
|
202 |
max_speech_duration_s: float
|
203 |
min_silence_duration_ms: int
|
|
|
204 |
speech_pad_ms: int
|
205 |
chunk_length_s: int
|
206 |
batch_size: int
|
|
|
209 |
diarization_device: str
|
210 |
"""
|
211 |
A data class to use Whisper parameters.
|
212 |
+
"""
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
torch
|
3 |
git+https://github.com/jhj0517/jhj0517-whisper.git
|
4 |
-
faster-whisper==1.0.
|
5 |
transformers
|
6 |
gradio==4.29.0
|
7 |
pytube
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
torch
|
3 |
git+https://github.com/jhj0517/jhj0517-whisper.git
|
4 |
+
faster-whisper==1.0.3
|
5 |
transformers
|
6 |
gradio==4.29.0
|
7 |
pytube
|