Spaces:
Running
Running
Merge pull request #269 from jhj0517/feature/add-bgm-tab
Browse files- app.py +37 -2
- configs/default_parameters.yaml +1 -1
- modules/uvr/music_separator.py +48 -7
- modules/whisper/whisper_base.py +1 -1
app.py
CHANGED
@@ -132,7 +132,7 @@ class App:
|
|
132 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
133 |
|
134 |
with gr.Accordion("BGM Separation", open=False):
|
135 |
-
cb_bgm_separation = gr.Checkbox(label="Enable BGM
|
136 |
interactive=True)
|
137 |
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
138 |
choices=self.whisper_inf.music_separator.available_devices)
|
@@ -199,6 +199,7 @@ class App:
|
|
199 |
translation_params = self.default_params["translation"]
|
200 |
deepl_params = translation_params["deepl"]
|
201 |
nllb_params = translation_params["nllb"]
|
|
|
202 |
|
203 |
with self.app:
|
204 |
with gr.Row():
|
@@ -344,6 +345,39 @@ class App:
|
|
344 |
inputs=None,
|
345 |
outputs=None)
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
# Launch the app with optional gradio settings
|
348 |
args = self.args
|
349 |
|
@@ -363,7 +397,8 @@ class App:
|
|
363 |
if os.path.exists(folder_path):
|
364 |
os.system(f"start {folder_path}")
|
365 |
else:
|
366 |
-
|
|
|
367 |
|
368 |
@staticmethod
|
369 |
def on_change_models(model_size: str):
|
|
|
132 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
133 |
|
134 |
with gr.Accordion("BGM Separation", open=False):
|
135 |
+
cb_bgm_separation = gr.Checkbox(label="Enable BGM Separation Filter", value=uvr_params["is_separate_bgm"],
|
136 |
interactive=True)
|
137 |
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
138 |
choices=self.whisper_inf.music_separator.available_devices)
|
|
|
199 |
translation_params = self.default_params["translation"]
|
200 |
deepl_params = translation_params["deepl"]
|
201 |
nllb_params = translation_params["nllb"]
|
202 |
+
uvr_params = self.default_params["bgm_separation"]
|
203 |
|
204 |
with self.app:
|
205 |
with gr.Row():
|
|
|
345 |
inputs=None,
|
346 |
outputs=None)
|
347 |
|
348 |
+
with gr.TabItem("BGM Separation"):
|
349 |
+
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
|
350 |
+
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
351 |
+
choices=self.whisper_inf.music_separator.available_devices)
|
352 |
+
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
|
353 |
+
choices=self.whisper_inf.music_separator.available_models)
|
354 |
+
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
355 |
+
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
|
356 |
+
value=True, visible=False)
|
357 |
+
btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
|
358 |
+
with gr.Column():
|
359 |
+
with gr.Row():
|
360 |
+
ad_instrumental = gr.Audio(label="Instrumental", scale=8)
|
361 |
+
btn_open_instrumental_folder = gr.Button('📂', scale=1)
|
362 |
+
with gr.Row():
|
363 |
+
ad_vocals = gr.Audio(label="Vocals", scale=8)
|
364 |
+
btn_open_vocals_folder = gr.Button('📂', scale=1)
|
365 |
+
|
366 |
+
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
|
367 |
+
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
|
368 |
+
cb_uvr_save_file],
|
369 |
+
outputs=[ad_instrumental, ad_vocals])
|
370 |
+
btn_open_instrumental_folder.click(inputs=None,
|
371 |
+
outputs=None,
|
372 |
+
fn=lambda: self.open_folder(os.path.join(
|
373 |
+
self.args.output_dir, "UVR", "instrumental"
|
374 |
+
)))
|
375 |
+
btn_open_vocals_folder.click(inputs=None,
|
376 |
+
outputs=None,
|
377 |
+
fn=lambda: self.open_folder(os.path.join(
|
378 |
+
self.args.output_dir, "UVR", "vocals"
|
379 |
+
)))
|
380 |
+
|
381 |
# Launch the app with optional gradio settings
|
382 |
args = self.args
|
383 |
|
|
|
397 |
if os.path.exists(folder_path):
|
398 |
os.system(f"start {folder_path}")
|
399 |
else:
|
400 |
+
os.makedirs(folder_path, exist_ok=True)
|
401 |
+
print(f"The directory path {folder_path} has newly created.")
|
402 |
|
403 |
@staticmethod
|
404 |
def on_change_models(model_size: str):
|
configs/default_parameters.yaml
CHANGED
@@ -48,7 +48,7 @@ bgm_separation:
|
|
48 |
is_separate_bgm: false
|
49 |
model_size: "UVR-MDX-NET-Inst_HQ_4"
|
50 |
segment_size: 256
|
51 |
-
save_file:
|
52 |
|
53 |
translation:
|
54 |
deepl:
|
|
|
48 |
is_separate_bgm: false
|
49 |
model_size: "UVR-MDX-NET-Inst_HQ_4"
|
50 |
segment_size: 256
|
51 |
+
save_file: false
|
52 |
|
53 |
translation:
|
54 |
deepl:
|
modules/uvr/music_separator.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Optional, Union
|
2 |
import numpy as np
|
3 |
import torchaudio
|
4 |
import soundfile as sf
|
@@ -9,10 +9,10 @@ import gradio as gr
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
12 |
-
from modules.utils.
|
|
|
13 |
from modules.diarize.audio_loader import load_audio
|
14 |
|
15 |
-
|
16 |
class MusicSeparator:
|
17 |
def __init__(self,
|
18 |
model_dir: Optional[str] = None,
|
@@ -67,7 +67,7 @@ class MusicSeparator:
|
|
67 |
device: Optional[str] = None,
|
68 |
segment_size: int = 256,
|
69 |
save_file: bool = False,
|
70 |
-
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray]:
|
71 |
"""
|
72 |
Separate the background music from the audio.
|
73 |
|
@@ -80,10 +80,14 @@ class MusicSeparator:
|
|
80 |
progress (gr.Progress): Gradio progress indicator.
|
81 |
|
82 |
Returns:
|
83 |
-
|
|
|
|
|
|
|
84 |
"""
|
85 |
if isinstance(audio, str):
|
86 |
output_filename, ext = os.path.basename(audio), ".wav"
|
|
|
87 |
|
88 |
if is_video(audio):
|
89 |
audio = load_audio(audio)
|
@@ -118,13 +122,37 @@ class MusicSeparator:
|
|
118 |
result = self.model(audio)
|
119 |
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
120 |
|
|
|
121 |
if save_file:
|
122 |
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
123 |
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
124 |
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
125 |
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
@staticmethod
|
130 |
def get_device():
|
@@ -140,3 +168,16 @@ class MusicSeparator:
|
|
140 |
torch.cuda.empty_cache()
|
141 |
gc.collect()
|
142 |
self.audio_info = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, List, Dict
|
2 |
import numpy as np
|
3 |
import torchaudio
|
4 |
import soundfile as sf
|
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
12 |
+
from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH
|
13 |
+
from modules.utils.files_manager import load_yaml, save_yaml, is_video
|
14 |
from modules.diarize.audio_loader import load_audio
|
15 |
|
|
|
16 |
class MusicSeparator:
|
17 |
def __init__(self,
|
18 |
model_dir: Optional[str] = None,
|
|
|
67 |
device: Optional[str] = None,
|
68 |
segment_size: int = 256,
|
69 |
save_file: bool = False,
|
70 |
+
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]:
|
71 |
"""
|
72 |
Separate the background music from the audio.
|
73 |
|
|
|
80 |
progress (gr.Progress): Gradio progress indicator.
|
81 |
|
82 |
Returns:
|
83 |
+
A Tuple of
|
84 |
+
np.ndarray: Instrumental numpy arrays.
|
85 |
+
np.ndarray: Vocals numpy arrays.
|
86 |
+
file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False.
|
87 |
"""
|
88 |
if isinstance(audio, str):
|
89 |
output_filename, ext = os.path.basename(audio), ".wav"
|
90 |
+
output_filename, orig_ext = os.path.splitext(output_filename)
|
91 |
|
92 |
if is_video(audio):
|
93 |
audio = load_audio(audio)
|
|
|
122 |
result = self.model(audio)
|
123 |
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
124 |
|
125 |
+
file_paths = []
|
126 |
if save_file:
|
127 |
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
128 |
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
129 |
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
130 |
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
131 |
+
file_paths += [instrumental_output_path, vocals_output_path]
|
132 |
+
|
133 |
+
return instrumental, vocals, file_paths
|
134 |
+
|
135 |
+
def separate_files(self,
|
136 |
+
files: List,
|
137 |
+
model_name: str,
|
138 |
+
device: Optional[str] = None,
|
139 |
+
segment_size: int = 256,
|
140 |
+
save_file: bool = True,
|
141 |
+
progress: gr.Progress = gr.Progress()) -> List[str]:
|
142 |
+
"""Separate the background music from the audio files. Returns only last Instrumental and vocals file paths
|
143 |
+
to display into gr.Audio()"""
|
144 |
+
self.cache_parameters(model_size=model_name, segment_size=segment_size)
|
145 |
+
|
146 |
+
for file_path in files:
|
147 |
+
instrumental, vocals, file_paths = self.separate(
|
148 |
+
audio=file_path,
|
149 |
+
model_name=model_name,
|
150 |
+
device=device,
|
151 |
+
segment_size=segment_size,
|
152 |
+
save_file=save_file,
|
153 |
+
progress=progress
|
154 |
+
)
|
155 |
+
return file_paths
|
156 |
|
157 |
@staticmethod
|
158 |
def get_device():
|
|
|
168 |
torch.cuda.empty_cache()
|
169 |
gc.collect()
|
170 |
self.audio_info = None
|
171 |
+
|
172 |
+
@staticmethod
|
173 |
+
def cache_parameters(model_size: str,
|
174 |
+
segment_size: int):
|
175 |
+
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
176 |
+
cached_uvr_params = cached_params["bgm_separation"]
|
177 |
+
uvr_params_to_cache = {
|
178 |
+
"model_size": model_size,
|
179 |
+
"segment_size": segment_size
|
180 |
+
}
|
181 |
+
cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache}
|
182 |
+
cached_params["bgm_separation"] = cached_uvr_params
|
183 |
+
save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH)
|
modules/whisper/whisper_base.py
CHANGED
@@ -111,7 +111,7 @@ class WhisperBase(ABC):
|
|
111 |
params.lang = language_code_dict[params.lang]
|
112 |
|
113 |
if params.is_bgm_separate:
|
114 |
-
music, audio = self.music_separator.separate(
|
115 |
audio=audio,
|
116 |
model_name=params.uvr_model_size,
|
117 |
device=params.uvr_device,
|
|
|
111 |
params.lang = language_code_dict[params.lang]
|
112 |
|
113 |
if params.is_bgm_separate:
|
114 |
+
music, audio, _ = self.music_separator.separate(
|
115 |
audio=audio,
|
116 |
model_name=params.uvr_model_size,
|
117 |
device=params.uvr_device,
|