Spaces:
Running
Running
Merge pull request #216 from jhj0517/feature/modularize-vad
Browse files- app.py +1 -1
- modules/vad/silero_vad.py +25 -4
- modules/whisper/faster_whisper_inference.py +0 -16
- modules/whisper/whisper_base.py +26 -0
app.py
CHANGED
@@ -137,7 +137,7 @@ class App:
|
|
137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
139 |
|
140 |
-
with gr.Accordion("VAD", open=False
|
141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
143 |
info="Lower it to be more sensitive to small sounds.")
|
|
|
137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
139 |
|
140 |
+
with gr.Accordion("VAD", open=False):
|
141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
143 |
info="Lower it to be more sensitive to small sounds.")
|
modules/vad/silero_vad.py
CHANGED
@@ -2,9 +2,10 @@
|
|
2 |
|
3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
4 |
import numpy as np
|
5 |
-
from typing import BinaryIO, Union, List, Optional
|
6 |
import warnings
|
7 |
import faster_whisper
|
|
|
8 |
import gradio as gr
|
9 |
|
10 |
|
@@ -17,7 +18,8 @@ class SileroVAD:
|
|
17 |
def run(self,
|
18 |
audio: Union[str, BinaryIO, np.ndarray],
|
19 |
vad_parameters: VadOptions,
|
20 |
-
progress: gr.Progress = gr.Progress()
|
|
|
21 |
"""
|
22 |
Run VAD
|
23 |
|
@@ -32,8 +34,10 @@ class SileroVAD:
|
|
32 |
|
33 |
Returns
|
34 |
----------
|
35 |
-
|
36 |
Pre-processed audio with VAD
|
|
|
|
|
37 |
"""
|
38 |
|
39 |
sampling_rate = self.sampling_rate
|
@@ -56,7 +60,7 @@ class SileroVAD:
|
|
56 |
audio = self.collect_chunks(audio, speech_chunks)
|
57 |
duration_after_vad = audio.shape[0] / sampling_rate
|
58 |
|
59 |
-
return audio
|
60 |
|
61 |
def get_speech_timestamps(
|
62 |
self,
|
@@ -241,3 +245,20 @@ class SileroVAD:
|
|
241 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
242 |
)
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
4 |
import numpy as np
|
5 |
+
from typing import BinaryIO, Union, List, Optional, Tuple
|
6 |
import warnings
|
7 |
import faster_whisper
|
8 |
+
from faster_whisper.transcribe import SpeechTimestampsMap, Segment
|
9 |
import gradio as gr
|
10 |
|
11 |
|
|
|
18 |
def run(self,
|
19 |
audio: Union[str, BinaryIO, np.ndarray],
|
20 |
vad_parameters: VadOptions,
|
21 |
+
progress: gr.Progress = gr.Progress()
|
22 |
+
) -> Tuple[np.ndarray, List[dict]]:
|
23 |
"""
|
24 |
Run VAD
|
25 |
|
|
|
34 |
|
35 |
Returns
|
36 |
----------
|
37 |
+
np.ndarray
|
38 |
Pre-processed audio with VAD
|
39 |
+
List[dict]
|
40 |
+
Chunks of speeches to be used to restore the timestamps later
|
41 |
"""
|
42 |
|
43 |
sampling_rate = self.sampling_rate
|
|
|
60 |
audio = self.collect_chunks(audio, speech_chunks)
|
61 |
duration_after_vad = audio.shape[0] / sampling_rate
|
62 |
|
63 |
+
return audio, speech_chunks
|
64 |
|
65 |
def get_speech_timestamps(
|
66 |
self,
|
|
|
245 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
246 |
)
|
247 |
|
248 |
+
def restore_speech_timestamps(
|
249 |
+
self,
|
250 |
+
segments: List[dict],
|
251 |
+
speech_chunks: List[dict],
|
252 |
+
sampling_rate: Optional[int] = None,
|
253 |
+
) -> List[dict]:
|
254 |
+
if sampling_rate is None:
|
255 |
+
sampling_rate = self.sampling_rate
|
256 |
+
|
257 |
+
ts_map = SpeechTimestampsMap(speech_chunks, sampling_rate)
|
258 |
+
|
259 |
+
for segment in segments:
|
260 |
+
segment["start"] = ts_map.get_original_time(segment["start"])
|
261 |
+
segment["end"] = ts_map.get_original_time(segment["end"])
|
262 |
+
|
263 |
+
return segments
|
264 |
+
|
modules/whisper/faster_whisper_inference.py
CHANGED
@@ -71,20 +71,6 @@ class FasterWhisperInference(WhisperBase):
|
|
71 |
if not params.hotwords:
|
72 |
params.hotwords = None
|
73 |
|
74 |
-
vad_options = None
|
75 |
-
if params.vad_filter:
|
76 |
-
# Explicit value set for float('inf') from gr.Number()
|
77 |
-
if params.max_speech_duration_s >= 9999:
|
78 |
-
params.max_speech_duration_s = float('inf')
|
79 |
-
|
80 |
-
vad_options = VadOptions(
|
81 |
-
threshold=params.threshold,
|
82 |
-
min_speech_duration_ms=params.min_speech_duration_ms,
|
83 |
-
max_speech_duration_s=params.max_speech_duration_s,
|
84 |
-
min_silence_duration_ms=params.min_silence_duration_ms,
|
85 |
-
speech_pad_ms=params.speech_pad_ms
|
86 |
-
)
|
87 |
-
|
88 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
89 |
|
90 |
segments, info = self.model.transcribe(
|
@@ -115,8 +101,6 @@ class FasterWhisperInference(WhisperBase):
|
|
115 |
language_detection_threshold=params.language_detection_threshold,
|
116 |
language_detection_segments=params.language_detection_segments,
|
117 |
prompt_reset_on_temperature=params.prompt_reset_on_temperature,
|
118 |
-
vad_filter=params.vad_filter,
|
119 |
-
vad_parameters=vad_options
|
120 |
)
|
121 |
progress(0, desc="Loading audio..")
|
122 |
|
|
|
71 |
if not params.hotwords:
|
72 |
params.hotwords = None
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
75 |
|
76 |
segments, info = self.model.transcribe(
|
|
|
101 |
language_detection_threshold=params.language_detection_threshold,
|
102 |
language_detection_segments=params.language_detection_segments,
|
103 |
prompt_reset_on_temperature=params.prompt_reset_on_temperature,
|
|
|
|
|
104 |
)
|
105 |
progress(0, desc="Loading audio..")
|
106 |
|
modules/whisper/whisper_base.py
CHANGED
@@ -91,12 +91,38 @@ class WhisperBase(ABC):
|
|
91 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
92 |
params.lang = language_code_dict[params.lang]
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
result, elapsed_time = self.transcribe(
|
95 |
audio,
|
96 |
progress,
|
97 |
*astuple(params)
|
98 |
)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
if params.is_diarize:
|
101 |
result, elapsed_time_diarization = self.diarizer.run(
|
102 |
audio=audio,
|
|
|
91 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
92 |
params.lang = language_code_dict[params.lang]
|
93 |
|
94 |
+
speech_chunks = None
|
95 |
+
if params.vad_filter:
|
96 |
+
# Explicit value set for float('inf') from gr.Number()
|
97 |
+
if params.max_speech_duration_s >= 9999:
|
98 |
+
params.max_speech_duration_s = float('inf')
|
99 |
+
|
100 |
+
vad_options = VadOptions(
|
101 |
+
threshold=params.threshold,
|
102 |
+
min_speech_duration_ms=params.min_speech_duration_ms,
|
103 |
+
max_speech_duration_s=params.max_speech_duration_s,
|
104 |
+
min_silence_duration_ms=params.min_silence_duration_ms,
|
105 |
+
speech_pad_ms=params.speech_pad_ms
|
106 |
+
)
|
107 |
+
|
108 |
+
audio, speech_chunks = self.vad.run(
|
109 |
+
audio=audio,
|
110 |
+
vad_parameters=vad_options,
|
111 |
+
progress=progress
|
112 |
+
)
|
113 |
+
|
114 |
result, elapsed_time = self.transcribe(
|
115 |
audio,
|
116 |
progress,
|
117 |
*astuple(params)
|
118 |
)
|
119 |
|
120 |
+
if params.vad_filter:
|
121 |
+
result = self.vad.restore_speech_timestamps(
|
122 |
+
segments=result,
|
123 |
+
speech_chunks=speech_chunks,
|
124 |
+
)
|
125 |
+
|
126 |
if params.is_diarize:
|
127 |
result, elapsed_time_diarization = self.diarizer.run(
|
128 |
audio=audio,
|