jhj0517
Apply constants
7d9eec3
raw
history blame
4.49 kB
import os
import torch
from typing import List, Union, BinaryIO, Optional
import numpy as np
import time
import logging
from modules.utils.paths import DIARIZATION_MODELS_DIR
from modules.diarize.diarize_pipeline import DiarizationPipeline, assign_word_speakers
from modules.diarize.audio_loader import load_audio
class Diarizer:
def __init__(self,
model_dir: str = DIARIZATION_MODELS_DIR
):
self.device = self.get_device()
self.available_device = self.get_available_device()
self.compute_type = "float16"
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
self.pipe = None
def run(self,
audio: Union[str, BinaryIO, np.ndarray],
transcribed_result: List[dict],
use_auth_token: str,
device: Optional[str] = None
):
"""
Diarize transcribed result as a post-processing
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio input. This can be file path or binary type.
transcribed_result: List[dict]
transcribed result through whisper.
use_auth_token: str
Huggingface token with READ permission. This is only needed the first time you download the model.
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
device: Optional[str]
Device for diarization.
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for running
"""
start_time = time.time()
if device is None:
device = self.device
if device != self.device or self.pipe is None:
self.update_pipe(
device=device,
use_auth_token=use_auth_token
)
audio = load_audio(audio)
diarization_segments = self.pipe(audio)
diarized_result = assign_word_speakers(
diarization_segments,
{"segments": transcribed_result}
)
for segment in diarized_result["segments"]:
speaker = "None"
if "speaker" in segment:
speaker = segment["speaker"]
segment["text"] = speaker + "|" + segment["text"].strip()
elapsed_time = time.time() - start_time
return diarized_result["segments"], elapsed_time
def update_pipe(self,
use_auth_token: str,
device: str
):
"""
Set pipeline for diarization
Parameters
----------
use_auth_token: str
Huggingface token with READ permission. This is only needed the first time you download the model.
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
device: str
Device for diarization.
"""
self.device = device
os.makedirs(self.model_dir, exist_ok=True)
if (not os.listdir(self.model_dir) and
not use_auth_token):
print(
"\nFailed to diarize. You need huggingface token and agree to their requirements to download the diarization model.\n"
"Go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and follow their instructions to download the model.\n"
)
return
logger = logging.getLogger("speechbrain.utils.train_logger")
# Disable redundant torchvision warning message
logger.disabled = True
self.pipe = DiarizationPipeline(
use_auth_token=use_auth_token,
device=device,
cache_dir=self.model_dir
)
logger.disabled = False
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
@staticmethod
def get_available_device():
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda")
elif torch.backends.mps.is_available():
devices.append("mps")
return devices