Whisper-WebUI / modules /whisper_Inference.py
jhj0517
removed redundant function
40f2b57
raw
history blame
6.34 kB
import whisper
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
import gradio as gr
import os
from datetime import datetime
DEFAULT_MODEL_SIZE = "large-v2"
class WhisperInference:
def __init__(self):
print("\nInitializing Model..\n")
self.current_model_size = DEFAULT_MODEL_SIZE
self.model = whisper.load_model(name=DEFAULT_MODEL_SIZE, download_root="models/Whisper")
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
def transcribe_file(self, fileobjs
, model_size, lang, subformat, istranslate,
progress=gr.Progress()):
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
if model_size != self.current_model_size:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio..")
files_info = {}
for fileobj in fileobjs:
audio = whisper.load_audio(fileobj.name)
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = file_name[:-9]
file_name = safe_filename(file_name)
timestamp = datetime.now().strftime("%m%d%H%M%S")
output_path = f"outputs/{file_name}-{timestamp}"
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
files_info[file_name] = subtitle
total_result = ''
for file_name, subtitle in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{subtitle}'
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
def transcribe_youtube(self, youtubelink
, model_size, lang, subformat, istranslate,
progress=gr.Progress()):
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
if model_size != self.current_model_size:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = whisper.load_audio(get_ytaudio(yt))
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
timestamp = datetime.now().strftime("%m%d%H%M%S")
output_path = f"outputs/{file_name}-{timestamp}"
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
def transcribe_mic(self, micaudio
, model_size, lang, subformat, istranslate,
progress=gr.Progress()):
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
if model_size != self.current_model_size:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio..")
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
timestamp = datetime.now().strftime("%m%d%H%M%S")
output_path = f"outputs/Mic-{timestamp}"
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"