Spaces:
Running
Running
import whisper | |
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename | |
from modules.youtube_manager import get_ytdata, get_ytaudio | |
import gradio as gr | |
import os | |
from datetime import datetime | |
DEFAULT_MODEL_SIZE = "large-v2" | |
class WhisperInference: | |
def __init__(self): | |
print("\nInitializing Model..\n") | |
self.current_model_size = DEFAULT_MODEL_SIZE | |
self.model = whisper.load_model(name=DEFAULT_MODEL_SIZE, download_root="models/Whisper") | |
self.available_models = whisper.available_models() | |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values())) | |
def transcribe_file(self, fileobjs | |
, model_size, lang, subformat, istranslate, | |
progress=gr.Progress()): | |
def progress_callback(progress_value): | |
progress(progress_value, desc="Transcribing..") | |
if model_size != self.current_model_size: | |
progress(0, desc="Initializing Model..") | |
self.current_model_size = model_size | |
self.model = whisper.load_model(name=model_size, download_root="models/Whisper") | |
if lang == "Automatic Detection": | |
lang = None | |
progress(0, desc="Loading Audio..") | |
files_info = {} | |
for fileobj in fileobjs: | |
audio = whisper.load_audio(fileobj.name) | |
translatable_model = ["large", "large-v1", "large-v2"] | |
if istranslate and self.current_model_size in translatable_model: | |
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate", | |
progress_callback=progress_callback) | |
else: | |
result = self.model.transcribe(audio=audio, language=lang, verbose=False, | |
progress_callback=progress_callback) | |
progress(1, desc="Completed!") | |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name)) | |
file_name = file_name[:-9] | |
file_name = safe_filename(file_name) | |
timestamp = datetime.now().strftime("%m%d%H%M%S") | |
output_path = f"outputs/{file_name}-{timestamp}" | |
if subformat == "SRT": | |
subtitle = get_srt(result["segments"]) | |
write_file(subtitle, f"{output_path}.srt") | |
elif subformat == "WebVTT": | |
subtitle = get_vtt(result["segments"]) | |
write_file(subtitle, f"{output_path}.vtt") | |
files_info[file_name] = subtitle | |
total_result = '' | |
for file_name, subtitle in files_info.items(): | |
total_result += '------------------------------------\n' | |
total_result += f'{file_name}\n\n' | |
total_result += f'{subtitle}' | |
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}" | |
def transcribe_youtube(self, youtubelink | |
, model_size, lang, subformat, istranslate, | |
progress=gr.Progress()): | |
def progress_callback(progress_value): | |
progress(progress_value, desc="Transcribing..") | |
if model_size != self.current_model_size: | |
progress(0, desc="Initializing Model..") | |
self.current_model_size = model_size | |
self.model = whisper.load_model(name=model_size, download_root="models/Whisper") | |
if lang == "Automatic Detection": | |
lang = None | |
progress(0, desc="Loading Audio from Youtube..") | |
yt = get_ytdata(youtubelink) | |
audio = whisper.load_audio(get_ytaudio(yt)) | |
translatable_model = ["large", "large-v1", "large-v2"] | |
if istranslate and self.current_model_size in translatable_model: | |
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate", | |
progress_callback=progress_callback) | |
else: | |
result = self.model.transcribe(audio=audio, language=lang, verbose=False, | |
progress_callback=progress_callback) | |
progress(1, desc="Completed!") | |
file_name = safe_filename(yt.title) | |
timestamp = datetime.now().strftime("%m%d%H%M%S") | |
output_path = f"outputs/{file_name}-{timestamp}" | |
if subformat == "SRT": | |
subtitle = get_srt(result["segments"]) | |
write_file(subtitle, f"{output_path}.srt") | |
elif subformat == "WebVTT": | |
subtitle = get_vtt(result["segments"]) | |
write_file(subtitle, f"{output_path}.vtt") | |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}" | |
def transcribe_mic(self, micaudio | |
, model_size, lang, subformat, istranslate, | |
progress=gr.Progress()): | |
def progress_callback(progress_value): | |
progress(progress_value, desc="Transcribing..") | |
if model_size != self.current_model_size: | |
progress(0, desc="Initializing Model..") | |
self.current_model_size = model_size | |
self.model = whisper.load_model(name=model_size, download_root="models/Whisper") | |
if lang == "Automatic Detection": | |
lang = None | |
progress(0, desc="Loading Audio..") | |
translatable_model = ["large", "large-v1", "large-v2"] | |
if istranslate and self.current_model_size in translatable_model: | |
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate", | |
progress_callback=progress_callback) | |
else: | |
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, | |
progress_callback=progress_callback) | |
progress(1, desc="Completed!") | |
timestamp = datetime.now().strftime("%m%d%H%M%S") | |
output_path = f"outputs/Mic-{timestamp}" | |
if subformat == "SRT": | |
subtitle = get_srt(result["segments"]) | |
write_file(subtitle, f"{output_path}.srt") | |
elif subformat == "WebVTT": | |
subtitle = get_vtt(result["segments"]) | |
write_file(subtitle, f"{output_path}.vtt") | |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}" | |