Whisper-WebUI / modules /insanely_fast_whisper_inference.py
jhj0517
add `download_model()`
5e73da1
raw
history blame
5.25 kB
import os
import time
import numpy as np
from typing import BinaryIO, Union, Tuple, List
import torch
from transformers import pipeline
from transformers.utils import is_flash_attn_2_available
import gradio as gr
import wget
from modules.whisper_parameter import *
from modules.whisper_base import WhisperBase
class InsanelyFastWhisperInference(WhisperBase):
def __init__(self):
super().__init__(
model_dir=os.path.join("models", "Whisper", "insanely_fast_whisper")
)
self.available_compute_types = ["float16"]
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
progress: gr.Progress,
*whisper_params,
) -> Tuple[List[dict], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperValues(*whisper_params)
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
if params.lang == "Automatic Detection":
params.lang = None
progress(0, desc="Transcribing...")
segments = self.model(
inputs=audio,
chunk_length_s=30,
batch_size=24,
return_timestamps=True,
)
segments_result = self.format_result(
transcribed_result=segments,
)
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress,
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
model_path = os.path.join(self.model_dir, model_size)
if not os.path.isdir(model_path) or not os.listdir(model_path):
self.download_model(
model_size=model_size,
download_root=model_path,
progress=progress
)
self.current_compute_type = compute_type
self.current_model_size = model_size
self.model = pipeline(
"automatic-speech-recognition",
model=os.path.join(self.model_dir, model_size),
torch_dtype=self.current_compute_type,
device=self.device,
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
)
@staticmethod
def format_result(
transcribed_result: dict
) -> List[dict]:
"""
Format the transcription result of insanely_fast_whisper as the same with other implementation.
Parameters
----------
transcribed_result: dict
Transcription result of the insanely_fast_whisper
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
result: List[dict]
Formatted result as the same with other implementation
"""
result = transcribed_result["chunks"]
for item in result:
start, end = item["timestamp"][0], item["timestamp"][1]
item["start"] = start
item["end"] = end
return result
@staticmethod
def download_model(
model_size: str,
download_root: str,
progress: gr.Progress
):
progress(0, 'Initializing model..')
print(f'Downloading {model_size} to "{download_root}"....')
os.makedirs(download_root, exist_ok=True)
download_list = [
"model.safetensors",
"config.json",
"generation_config.json",
"preprocessor_config.json",
"tokenizer.json",
"tokenizer_config.json",
"added_tokens.json",
"special_tokens_map.json",
"vocab.json",
]
download_host = f"https://huggingface.co/openai/whisper-{model_size}/resolve/main"
for item in download_list:
wget.download(
download_host+"/"+item,
download_root
)