Whisper-WebUI / modules /translation_base.py
jhj0517
add output_dir
c573a1a
raw
history blame
5.69 kB
import os
import torch
import gradio as gr
from abc import ABC, abstractmethod
from typing import List
from datetime import datetime
from modules.whisper_parameter import *
from modules.subtitle_manager import *
class TranslationBase(ABC):
def __init__(self,
model_dir: str,
output_dir: str):
super().__init__()
self.model = None
self.model_dir = model_dir
self.output_dir = output_dir
os.makedirs(self.model_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.current_model_size = None
self.device = self.get_device()
@abstractmethod
def translate(self,
text: str
):
pass
@abstractmethod
def update_model(self,
model_size: str,
src_lang: str,
tgt_lang: str,
progress: gr.Progress
):
pass
def translate_file(self,
fileobjs: list,
model_size: str,
src_lang: str,
tgt_lang: str,
add_timestamp: bool,
progress=gr.Progress()) -> list:
"""
Translate subtitle file from source language to target language
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
src_lang: str
Source language of the file to translate from gr.Dropdown()
tgt_lang: str
Target language of the file to translate from gr.Dropdown()
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
Returns
----------
A List of
String to return to gr.Textbox()
Files to return to gr.Files()
"""
try:
self.update_model(model_size=model_size,
src_lang=src_lang,
tgt_lang=tgt_lang,
progress=progress)
files_info = {}
for fileobj in fileobjs:
file_path = fileobj.name
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.name))
if file_ext == ".srt":
parsed_dicts = parse_srt(file_path=file_path)
total_progress = len(parsed_dicts)
for index, dic in enumerate(parsed_dicts):
progress(index / total_progress, desc="Translating..")
translated_text = self.translate(dic["sentence"])
dic["sentence"] = translated_text
subtitle = get_serialized_srt(parsed_dicts)
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", "translations", f"{file_name}.srt")
elif file_ext == ".vtt":
parsed_dicts = parse_vtt(file_path=file_path)
total_progress = len(parsed_dicts)
for index, dic in enumerate(parsed_dicts):
progress(index / total_progress, desc="Translating..")
translated_text = self.translate(dic["sentence"])
dic["sentence"] = translated_text
subtitle = get_serialized_vtt(parsed_dicts)
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join(self.output_dir, "translations", f"{file_name}-{timestamp}")
else:
output_path = os.path.join(self.output_dir, "translations", f"{file_name}.vtt")
write_file(subtitle, output_path)
files_info[file_name] = subtitle
total_result = ''
for file_name, subtitle in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{subtitle}'
gr_str = f"Done! Subtitle is in the outputs/translation folder.\n\n{total_result}"
return [gr_str, output_path]
except Exception as e:
print(f"Error: {str(e)}")
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
@staticmethod
def release_cuda_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
@staticmethod
def remove_input_files(file_paths: List[str]):
if not file_paths:
return
for file_path in file_paths:
if file_path and os.path.exists(file_path):
os.remove(file_path)