Whisper-WebUI / modules /whisper_Inference.py
jhj0517
add args for local model path
6d9d096
raw
history blame
14.1 kB
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
import torch
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
from modules.whisper_parameter import *
DEFAULT_MODEL_SIZE = "large-v3"
class WhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.available_compute_types = ["float16", "float32"]
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
self.model_dir = os.path.join("models", "Whisper")
def transcribe_file(self,
files: list,
file_format: str,
add_timestamp: bool,
progress=gr.Progress(),
*whisper_params
) -> list:
"""
Write subtitle file from Files
Parameters
----------
files: list
List of files to transcribe from gr.Files()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
files_info = {}
for file in files:
progress(0, desc="Loading Audio..")
audio = whisper.load_audio(file.name)
result, elapsed_time = self.transcribe(audio,
progress,
*whisper_params)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
file_name = safe_filename(file_name)
subtitle, file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
file_format=file_format
)
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time, "path": file_path}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f"{info['subtitle']}"
total_time += info["elapsed_time"]
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
result_file_path = [info['path'] for info in files_info.values()]
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing file: {str(e)}")
finally:
self.release_cuda_memory()
self.remove_input_files([file.name for file in files])
def transcribe_youtube(self,
youtube_link: str,
file_format: str,
add_timestamp: bool,
progress=gr.Progress(),
*whisper_params) -> list:
"""
Write subtitle file from Youtube
Parameters
----------
youtube_link: str
URL of the Youtube video to transcribe from gr.Textbox()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtube_link)
audio = whisper.load_audio(get_ytaudio(yt))
result, elapsed_time = self.transcribe(audio,
progress,
*whisper_params)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle, result_file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
file_format=file_format
)
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing youtube video: {str(e)}")
finally:
try:
if 'yt' not in locals():
yt = get_ytdata(youtube_link)
file_path = get_ytaudio(yt)
else:
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
except Exception as cleanup_error:
pass
def transcribe_mic(self,
mic_audio: str,
file_format: str,
progress=gr.Progress(),
*whisper_params) -> list:
"""
Write subtitle file from microphone
Parameters
----------
mic_audio: str
Audio file path from gr.Microphone()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio..")
result, elapsed_time = self.transcribe(
mic_audio,
progress,
*whisper_params,
)
progress(1, desc="Completed!")
subtitle, result_file_path = self.generate_and_write_file(
file_name="Mic",
transcribed_segments=result,
add_timestamp=True,
file_format=file_format
)
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing mic: {str(e)}")
finally:
self.release_cuda_memory()
self.remove_input_files([mic_audio])
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
progress: gr.Progress,
*whisper_params,
) -> Tuple[List[dict], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperValues(*whisper_params)
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
if params.lang == "Automatic Detection":
params.lang = None
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
segments_result = self.model.transcribe(audio=audio,
language=params.lang,
verbose=False,
beam_size=params.beam_size,
logprob_threshold=params.log_prob_threshold,
no_speech_threshold=params.no_speech_threshold,
task="translate" if params.is_translate and self.current_model_size in self.translatable_model else "transcribe",
fp16=True if params.compute_type == "float16" else False,
best_of=params.best_of,
patience=params.patience,
temperature=params.temperature,
compression_ratio_threshold=params.compression_ratio_threshold,
progress_callback=progress_callback,)["segments"]
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress,
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
self.current_compute_type = compute_type
self.current_model_size = model_size
self.model = whisper.load_model(
name=model_size,
device=self.device,
download_root=self.model_dir
)
@staticmethod
def generate_and_write_file(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
file_format: str,
) -> str:
"""
Writes subtitle file
Parameters
----------
file_name: str
Output file name
transcribed_segments: list
Text segments transcribed from audio
add_timestamp: bool
Determines whether to add a timestamp to the end of the filename.
file_format: str
File format to write. Supported formats: [SRT, WebVTT, txt]
Returns
----------
content: str
Result of the transcription
output_path: str
output file path
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if file_format == "SRT":
content = get_srt(transcribed_segments)
output_path += '.srt'
write_file(content, output_path)
elif file_format == "WebVTT":
content = get_vtt(transcribed_segments)
output_path += '.vtt'
write_file(content, output_path)
elif file_format == "txt":
content = get_txt(transcribed_segments)
output_path += '.txt'
write_file(content, output_path)
return content, output_path
@staticmethod
def format_time(elapsed_time: float) -> str:
"""
Get {hours} {minutes} {seconds} time format string
Parameters
----------
elapsed_time: str
Elapsed time for transcription
Returns
----------
Time format string
"""
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()