File size: 7,113 Bytes
8c8001e
80e4171
b14146c
d317550
 
 
da960ac
c5d0765
80e4171
d317550
 
8c8001e
6b74fe5
fda7ba6
d317550
 
 
 
 
 
 
e2bed65
d317550
 
b62a259
 
 
 
b14146c
7baa848
e2bed65
 
 
 
 
 
d317550
 
 
e2bed65
d317550
da960ac
 
 
 
 
 
 
 
e2bed65
 
 
 
 
 
 
 
 
 
d317550
 
e2bed65
d317550
 
80e4171
e2bed65
 
c5d0765
80e4171
8c8001e
8fd7f62
 
b14146c
8fd7f62
 
 
 
 
 
 
 
 
8c8001e
 
 
 
8fd7f62
80e4171
 
6e5f6d9
fda7ba6
 
 
 
 
 
 
80e4171
 
 
fda7ba6
770e792
e2bed65
 
 
 
 
da960ac
 
 
fda7ba6
80e4171
c5d0765
e2bed65
 
 
 
 
5306f0a
d317550
c5d0765
80e4171
b7fa700
 
8c8001e
80e4171
 
 
 
 
8c8001e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d317550
 
 
8fd7f62
da960ac
 
 
8fd7f62
da960ac
 
 
 
 
 
 
8c8001e
 
 
 
 
 
 
 
 
 
 
0dced67
8c8001e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from typing import Optional, Union, List, Dict
import numpy as np
import torchaudio
import soundfile as sf
import os
import torch
import gc
import gradio as gr
from datetime import datetime

from uvr.models import MDX, Demucs, VrNetwork, MDXC
from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH
from modules.utils.files_manager import load_yaml, save_yaml, is_video
from modules.diarize.audio_loader import load_audio

class MusicSeparator:
    def __init__(self,
                 model_dir: Optional[str] = None,
                 output_dir: Optional[str] = None):
        self.model = None
        self.device = self.get_device()
        self.available_devices = ["cpu", "cuda"]
        self.model_dir = model_dir
        self.output_dir = output_dir
        instrumental_output_dir = os.path.join(self.output_dir, "instrumental")
        vocals_output_dir = os.path.join(self.output_dir, "vocals")
        os.makedirs(instrumental_output_dir, exist_ok=True)
        os.makedirs(vocals_output_dir, exist_ok=True)
        self.audio_info = None
        self.available_models = ["UVR-MDX-NET-Inst_HQ_4", "UVR-MDX-NET-Inst_3"]
        self.default_model = self.available_models[0]
        self.current_model_size = self.default_model
        self.model_config = {
            "segment": 256,
            "split": True
        }

    def update_model(self,
                     model_name: str = "UVR-MDX-NET-Inst_1",
                     device: Optional[str] = None,
                     segment_size: int = 256):
        """
        Update model with the given model name

        Args:
            model_name (str): Model name.
            device (str): Device to use for the model.
            segment_size (int): Segment size for the prediction.
        """
        if device is None:
            device = self.device

        self.device = device
        self.model_config = {
            "segment": segment_size,
            "split": True
        }
        self.model = MDX(name=model_name,
                         other_metadata=self.model_config,
                         device=self.device,
                         logger=None,
                         model_dir=self.model_dir)

    def separate(self,
                 audio: Union[str, np.ndarray],
                 model_name: str,
                 device: Optional[str] = None,
                 segment_size: int = 256,
                 save_file: bool = False,
                 progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]:
        """
        Separate the background music from the audio.

        Args:
            audio (Union[str, np.ndarray]): Audio path or numpy array.
            model_name (str): Model name.
            device (str): Device to use for the model.
            segment_size (int): Segment size for the prediction.
            save_file (bool): Whether to save the separated audio to output path or not.
            progress (gr.Progress): Gradio progress indicator.

        Returns:
            A Tuple of
            np.ndarray: Instrumental numpy arrays.
            np.ndarray: Vocals numpy arrays.
            file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False.
        """
        if isinstance(audio, str):
            output_filename, ext = os.path.basename(audio), ".wav"
            output_filename, orig_ext = os.path.splitext(output_filename)

            if is_video(audio):
                audio = load_audio(audio)
                sample_rate = 16000
            else:
                self.audio_info = torchaudio.info(audio)
                sample_rate = self.audio_info.sample_rate
        else:
            timestamp = datetime.now().strftime("%m%d%H%M%S")
            output_filename, ext = f"UVR-{timestamp}", ".wav"
            sample_rate = 16000

        model_config = {
            "segment": segment_size,
            "split": True
        }

        if (self.model is None or
                self.current_model_size != model_name or
                self.model_config != model_config or
                self.model.sample_rate != sample_rate or
                self.device != device):
            progress(0, desc="Initializing UVR Model..")
            self.update_model(
                model_name=model_name,
                device=device,
                segment_size=segment_size
            )
            self.model.sample_rate = sample_rate

        progress(0, desc="Separating background music from the audio..")
        result = self.model(audio)
        instrumental, vocals = result["instrumental"].T, result["vocals"].T

        file_paths = []
        if save_file:
            instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
            vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
            sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
            sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
            file_paths += [instrumental_output_path, vocals_output_path]

        return instrumental, vocals, file_paths

    def separate_files(self,
                       files: List,
                       model_name: str,
                       device: Optional[str] = None,
                       segment_size: int = 256,
                       save_file: bool = True,
                       progress: gr.Progress = gr.Progress()) -> List[str]:
        """Separate the background music from the audio files. Returns only last Instrumental and vocals file paths
        to display into gr.Audio()"""
        self.cache_parameters(model_size=model_name, segment_size=segment_size)

        for file_path in files:
            instrumental, vocals, file_paths = self.separate(
                audio=file_path,
                model_name=model_name,
                device=device,
                segment_size=segment_size,
                save_file=save_file,
                progress=progress
            )
        return file_paths

    @staticmethod
    def get_device():
        """Get device for the model"""
        return "cuda" if torch.cuda.is_available() else "cpu"

    def offload(self):
        """Offload the model and free up the memory"""
        if self.model is not None:
            del self.model
            self.model = None
        if self.device == "cuda":
            torch.cuda.empty_cache()
        gc.collect()
        self.audio_info = None

    @staticmethod
    def cache_parameters(model_size: str,
                         segment_size: int):
        cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
        cached_uvr_params = cached_params["bgm_separation"]
        uvr_params_to_cache = {
            "model_size": model_size,
            "segment_size": segment_size
        }
        cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache}
        cached_params["bgm_separation"] = cached_uvr_params
        save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH)