File size: 4,270 Bytes
595b5f3
 
 
 
32d4384
595b5f3
ada247c
 
595b5f3
 
 
201b316
595b5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada247c
32d4384
595b5f3
ada247c
595b5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d4384
 
 
595b5f3
 
 
 
 
32d4384
595b5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import torch
from typing import List
import time
import logging

from modules.diarize.diarize_pipeline import DiarizationPipeline, assign_word_speakers
from modules.diarize.audio_loader import load_audio

class Diarizer:
    def __init__(self,
                 model_dir: str = os.path.join("models", "Diarization")
                 ):
        self.device = self.get_device()
        self.available_device = self.get_available_device()
        self.compute_type = "float16"
        self.model_dir = model_dir
        os.makedirs(self.model_dir, exist_ok=True)
        self.pipe = None

    def run(self,
            audio: str,
            transcribed_result: List[dict],
            use_auth_token: str,
            device: str
            ):
        """
        Diarize transcribed result as a post-processing

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio input. This can be file path or binary type.
        transcribed_result: List[dict]
            transcribed result through whisper.
        use_auth_token: str
            Huggingface token with READ permission. This is only needed the first time you download the model.
            You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
        device: str
            Device for diarization.

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for running
        """
        start_time = time.time()

        if (device != self.device
                or self.pipe is None):
            self.update_pipe(
                device=device,
                use_auth_token=use_auth_token
            )

        audio = load_audio(audio)

        diarization_segments = self.pipe(audio)
        diarized_result = assign_word_speakers(
            diarization_segments,
            {"segments": transcribed_result}
        )

        for segment in diarized_result["segments"]:
            speaker = "None"
            if "speaker" in segment:
                speaker = segment["speaker"]
            segment["text"] = speaker + "|" + segment["text"][1:]

        elapsed_time = time.time() - start_time
        return diarized_result["segments"], elapsed_time

    def update_pipe(self,
                    use_auth_token: str,
                    device: str
                    ):
        """
        Set pipeline for diarization

        Parameters
        ----------
        use_auth_token: str
            Huggingface token with READ permission. This is only needed the first time you download the model.
            You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
        device: str
            Device for diarization.
        """

        os.makedirs(self.model_dir, exist_ok=True)

        if (not os.listdir(self.model_dir) and
                not use_auth_token):
            print(
                "\nFailed to diarize. You need huggingface token and agree to their requirements to download the diarization model.\n"
                "Go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and follow their instructions to download the model.\n"
            )
            return

        logger = logging.getLogger("speechbrain.utils.train_logger")
        # Disable redundant torchvision warning message
        logger.disabled = True
        self.pipe = DiarizationPipeline(
            use_auth_token=use_auth_token,
            device=device,
            cache_dir=self.model_dir
        )
        logger.disabled = False

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"

    @staticmethod
    def get_available_device():
        devices = ["cpu"]
        if torch.cuda.is_available():
            devices.append("cuda")
        elif torch.backends.mps.is_available():
            devices.append("mps")
        return devices