File size: 4,118 Bytes
8453b3d
 
5206df6
8453b3d
 
 
 
 
 
 
 
 
 
 
84a6b12
 
ac4bff9
ca26f25
b8faf9d
45fcb1d
abc6224
a2bf507
b8faf9d
 
8453b3d
b3ffc71
a2bf507
 
 
5206df6
a2bf507
 
5206df6
a2bf507
 
 
5206df6
a2bf507
 
5206df6
a2bf507
 
5206df6
a2bf507
 
 
 
5206df6
a2bf507
 
 
5206df6
84a6b12
 
5206df6
84a6b12
 
5206df6
ca26f25
ac4bff9
 
 
ca26f25
 
 
 
 
b8faf9d
45fcb1d
abc6224
 
 
45fcb1d
8808c7b
45fcb1d
abc6224
 
 
 
 
a2bf507
 
 
 
b8faf9d
 
a2bf507
 
 
 
 
8453b3d
 
 
 
 
 
 
 
 
 
 
 
84a6b12
 
ac4bff9
ca26f25
b8faf9d
45fcb1d
abc6224
a2bf507
b8faf9d
 
a2bf507
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from dataclasses import dataclass, fields
import gradio as gr
from typing import Optional


@dataclass
class WhisperGradioComponents:
    model_size: gr.Dropdown
    lang: gr.Dropdown
    is_translate: gr.Checkbox
    beam_size: gr.Number
    log_prob_threshold: gr.Number
    no_speech_threshold: gr.Number
    compute_type: gr.Dropdown
    best_of: gr.Number
    patience: gr.Number
    condition_on_previous_text: gr.Checkbox
    initial_prompt: gr.Textbox
    temperature: gr.Slider
    compression_ratio_threshold: gr.Number
    vad_filter: gr.Checkbox
    """
    A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
    See more about Gradio pre-processing: https://www.gradio.app/docs/components

    Attributes
    ----------
    model_size: gr.Dropdown
        Whisper model size.
        
    lang: gr.Dropdown
        Source language of the file to transcribe.
        
    is_translate: gr.Checkbox
        Boolean value that determines whether to translate to English.
        It's Whisper's feature to translate speech from another language directly into English end-to-end.
        
    beam_size: gr.Number
        Int value that is used for decoding option.
        
    log_prob_threshold: gr.Number
        If the average log probability over sampled tokens is below this value, treat as failed.
        
    no_speech_threshold: gr.Number
        If the no_speech probability is higher than this value AND 
        the average log probability over sampled tokens is below `log_prob_threshold`,
        consider the segment as silent.
        
    compute_type: gr.Dropdown
        compute type for transcription.
        see more info : https://opennmt.net/CTranslate2/quantization.html
        
    best_of: gr.Number
        Number of candidates when sampling with non-zero temperature.
        
    patience: gr.Number
        Beam search patience factor.
        
    condition_on_previous_text: gr.Checkbox
        if True, the previous output of the model is provided as a prompt for the next window;
        disabling may make the text inconsistent across windows, but the model becomes less prone to
        getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
        
    initial_prompt: gr.Textbox
        Optional text to provide as a prompt for the first window. This can be used to provide, or
        "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
        to make it more likely to predict those word correctly.
        
    temperature: gr.Slider 
        Temperature for sampling. It can be a tuple of temperatures,
        which will be successively used upon failures according to either
        `compression_ratio_threshold` or `log_prob_threshold`.
            
    compression_ratio_threshold: gr.Number
        If the gzip compression ratio is above this value, treat as failed
        
    vad_filter: gr.Checkbox
        Enable the voice activity detection (VAD) to filter out parts of the audio
        without speech. This step is using the Silero VAD model
        https://github.com/snakers4/silero-vad.
    """

    def to_list(self) -> list:
        """
        Converts the data class attributes into a list. Use "before" Gradio pre-processing.
        See more about Gradio pre-processing: : https://www.gradio.app/docs/components

        Returns
        ----------
        A list of Gradio components
        """
        return [getattr(self, f.name) for f in fields(self)]


@dataclass
class WhisperValues:
    model_size: str
    lang: str
    is_translate: bool
    beam_size: int
    log_prob_threshold: float
    no_speech_threshold: float
    compute_type: str
    best_of: int
    patience: float
    condition_on_previous_text: bool
    initial_prompt: Optional[str]
    temperature: float
    compression_ratio_threshold: float
    vad_filter: bool
    """
    A data class to use Whisper parameters. Use "after" Gradio pre-processing.
    See more about Gradio pre-processing: : https://www.gradio.app/docs/components
    """