File size: 4,884 Bytes
63ab978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import whisper
from modules.subtitle_manager import get_srt,get_vtt,write_srt,write_vtt,safe_filename
from modules.youtube_manager import get_ytdata,get_ytaudio
import gradio as gr
import os
from datetime import datetime

class ModelInference():
    def __init__(self):
        print("\nInitializing Model..\n")
        self.default_model = "large-v2"
        self.model = whisper.load_model(self.default_model)

    def transcribe_file(self,fileobj
                        ,model,lang,subformat,istranslate,
                        progress=gr.Progress()):
        
        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")
        
        if model != self.default_model or model==None:
            progress(0,desc="Initializing Model..")
            self.model = whisper.load_model(model)

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio..")    
        audio = whisper.load_audio(fileobj.name)

        if istranslate == True:
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
        else : 
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,progress_callback=progress_callback)

        progress(1,desc="Completed!")

        file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
        file_name = file_name[:-9]
        file_name = safe_filename(file_name)
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        output_path = f"outputs/{file_name}-{timestamp}"

        if subformat == "SRT":
            subtitle = get_srt(result["segments"])
            write_srt(subtitle,f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(result["segments"])
            write_vtt(subtitle,f"{output_path}.vtt")    

        return f"Done! Subtitle is in the outputs folder.\n\n{subtitle}"
    
    def transcribe_youtube(self,youtubelink
                        ,model,lang,subformat,istranslate,
                        progress=gr.Progress()):
        
        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")

        if model != self.default_model or model==None:
            progress(0,desc="Initializing Model..")
            self.model = whisper.load_model(model)

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio from Youtube..")    
        yt = get_ytdata(youtubelink)
        audio = whisper.load_audio(get_ytaudio(yt))

        if istranslate == True:
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
        else : 
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,progress_callback=progress_callback)

        progress(1,desc="Completed!")

        file_name = safe_filename(yt.title)
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        output_path = f"outputs/{file_name}-{timestamp}"

        if subformat == "SRT":
            subtitle = get_srt(result["segments"])
            write_srt(subtitle,f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(result["segments"])
            write_vtt(subtitle,f"{output_path}.vtt")   

        return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
    
    def transcribe_mic(self,micaudio
                    ,model,lang,subformat,istranslate,
                    progress=gr.Progress()):

        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")
        
        if model != self.default_model or model==None:
            progress(0,desc="Initializing Model..")
            self.model = whisper.load_model(model)

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio..")    

        if istranslate == True:
            result = self.model.transcribe(audio=micaudio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
        else : 
            result = self.model.transcribe(audio=micaudio,language=lang,verbose=False,progress_callback=progress_callback)

        progress(1,desc="Completed!")

        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        output_path = f"outputs/Mic-{timestamp}"

        if subformat == "SRT":
            subtitle = get_srt(result["segments"])
            write_srt(subtitle,f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(result["segments"])
            write_vtt(subtitle,f"{output_path}.vtt")   
            
        return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"