Spaces:
Running
Running
File size: 50,713 Bytes
9cf2e86 a85ea1b 9cf2e86 ada247c 3fde2e0 ada247c a526073 63ab978 9cf2e86 0f16dda 15d86ff 1f79d6e 2d93272 184dab0 2d93272 736206b 15d86ff c364d35 15d86ff 75962fd b2bb752 5633565 201b316 b2bb752 75962fd b2bb752 5633565 201b316 b2bb752 1a50cf4 b2bb752 5633565 201b316 b2bb752 15d86ff b2bb752 5633565 201b316 b2bb752 15d86ff 9cf2e86 63ab978 9cf2e86 9cbb786 9cf2e86 5a1d3d2 9cf2e86 5a1d3d2 63ab978 9cf2e86 3fde2e0 9cf2e86 767d188 e3a7cef 767d188 a85ea1b 767d188 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 2ddb400 ccf78ae a85ea1b 201b316 e29f6b4 a85ea1b e29f6b4 a85ea1b 84a6b12 a85ea1b f314f4c a85ea1b 5a66e88 a85ea1b 5a66e88 a85ea1b 5a66e88 ec17fd7 661e83c a85ea1b 661e83c a85ea1b 661e83c 201b316 1664a01 a85ea1b 9cf2e86 4b5f334 e3a7cef 9cf2e86 767d188 a85ea1b edcb1e1 9cf2e86 6148cfe e3a7cef 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 ccf78ae 201b316 e29f6b4 a85ea1b e29f6b4 a85ea1b 84a6b12 a85ea1b f314f4c a85ea1b 5a66e88 a85ea1b 5a66e88 a85ea1b 5a66e88 ec17fd7 661e83c a85ea1b 661e83c a85ea1b 661e83c 201b316 1664a01 a85ea1b 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 a85ea1b 661e83c 9cf2e86 6148cfe e3a7cef 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 201b316 e29f6b4 a85ea1b e29f6b4 a85ea1b 84a6b12 a85ea1b f314f4c a85ea1b 5a66e88 a85ea1b 5a66e88 a85ea1b 5a66e88 ec17fd7 661e83c a85ea1b 661e83c a85ea1b 661e83c 201b316 1664a01 569198b 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 a85ea1b 661e83c 9cf2e86 6148cfe e3a7cef 9cf2e86 e3a7cef 9cf2e86 1d08db8 4b5f334 1d08db8 9cf2e86 b3efa33 9cf2e86 184dab0 ccf78ae 9cf2e86 4b5f334 e3a7cef 9cf2e86 a85ea1b e3a7cef 9cf2e86 35245db 9cf2e86 35245db 409297c da40b9a a46b091 35245db 3fde2e0 18639e5 9cf2e86 a85ea1b d7f2438 18639e5 409297c d7f2438 0f16dda 29aee3c 0d39c53 a85ea1b 5633565 9cf2e86 3fde2e0 9cf2e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import os
import argparse
import gradio as gr
from modules.whisper.whisper_Inference import WhisperInference
from modules.whisper.faster_whisper_inference import FasterWhisperInference
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.translation.nllb_inference import NLLBInference
from ui.htmls import *
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.whisper_parameter import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
self.whisper_inf = self.init_whisper()
print(f"Use \"{self.args.whisper_type}\" implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.deepl_api = DeepLAPI(
output_dir=self.args.output_dir
)
def init_whisper(self):
# Temporal fix of the issue : https://github.com/jhj0517/Whisper-WebUI/issues/144
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
whisper_type = self.args.whisper_type.lower().strip()
if whisper_type in ["faster_whisper", "faster-whisper", "fasterwhisper"]:
whisper_inf = FasterWhisperInference(
model_dir=self.args.faster_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
elif whisper_type in ["whisper"]:
whisper_inf = WhisperInference(
model_dir=self.args.whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
elif whisper_type in ["insanely_fast_whisper", "insanely-fast-whisper", "insanelyfastwhisper",
"insanely_faster_whisper", "insanely-faster-whisper", "insanelyfasterwhisper"]:
whisper_inf = InsanelyFastWhisperInference(
model_dir=self.args.insanely_fast_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
else:
whisper_inf = FasterWhisperInference(
model_dir=self.args.faster_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
return whisper_inf
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
def launch(self):
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Column():
input_file = gr.Files(type="filepath", label="Upload File here")
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
" Leave this field empty if you do not wish to use a local path.",
visible=self.args.colab,
value="")
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type",
choices=self.whisper_inf.available_compute_types,
value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
interactive=True)
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
with gr.Column():
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
info="Exponential length penalty constant.")
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
tb_prefix = gr.Textbox(label="Prefix", value=None,
info="Optional text to provide as a prefix for the first window.")
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
info="Suppress blank outputs at the beginning of the sampling.")
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
info="The initial timestamp cannot be later than this.")
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'βΒΏ([{-",
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
value="\"'.γ,οΌ!οΌ?οΌ:οΌβ)]}γ",
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
value=None,
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
tb_hotwords = gr.Textbox(label="Hotwords", value=None,
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
value=None,
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
precision=0,
info="Number of segments to consider for the language detection.")
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
value=2000)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
btn_openfolder = gr.Button('π', scale=1)
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
whisper_params = WhisperParameters(
model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device,
length_penalty=nb_length_penalty,
repetition_penalty=nb_repetition_penalty,
no_repeat_ngram_size=nb_no_repeat_ngram_size,
prefix=tb_prefix,
suppress_blank=cb_suppress_blank,
suppress_tokens=tb_suppress_tokens,
max_initial_timestamp=nb_max_initial_timestamp,
word_timestamps=cb_word_timestamps,
prepend_punctuations=tb_prepend_punctuations,
append_punctuations=tb_append_punctuations,
max_new_tokens=nb_max_new_tokens,
chunk_length=nb_chunk_length,
hallucination_silence_threshold=nb_hallucination_silence_threshold,
hotwords=tb_hotwords,
language_detection_threshold=nb_language_detection_threshold,
language_detection_segments=nb_language_detection_segments
)
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type",
choices=self.whisper_inf.available_compute_types,
value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
interactive=True)
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
with gr.Column():
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
info="Exponential length penalty constant.")
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
tb_prefix = gr.Textbox(label="Prefix", value=None,
info="Optional text to provide as a prefix for the first window.")
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
info="Suppress blank outputs at the beginning of the sampling.")
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
info="The initial timestamp cannot be later than this.")
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'βΒΏ([{-",
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
value="\"'.γ,οΌ!οΌ?οΌ:οΌβ)]}γ",
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
value=None,
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
tb_hotwords = gr.Textbox(label="Hotwords", value=None,
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
value=None,
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
precision=0,
info="Number of segments to consider for the language detection.")
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
value=2000)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
whisper_params = WhisperParameters(
model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device,
length_penalty=nb_length_penalty,
repetition_penalty=nb_repetition_penalty,
no_repeat_ngram_size=nb_no_repeat_ngram_size,
prefix=tb_prefix,
suppress_blank=cb_suppress_blank,
suppress_tokens=tb_suppress_tokens,
max_initial_timestamp=nb_max_initial_timestamp,
word_timestamps=cb_word_timestamps,
prepend_punctuations=tb_prepend_punctuations,
append_punctuations=tb_append_punctuations,
max_new_tokens=nb_max_new_tokens,
chunk_length=nb_chunk_length,
hallucination_silence_threshold=nb_hallucination_silence_threshold,
hotwords=tb_hotwords,
language_detection_threshold=nb_language_detection_threshold,
language_detection_segments=nb_language_detection_segments
)
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type",
choices=self.whisper_inf.available_compute_types,
value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
interactive=True)
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
with gr.Column():
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
info="Exponential length penalty constant.")
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
tb_prefix = gr.Textbox(label="Prefix", value=None,
info="Optional text to provide as a prefix for the first window.")
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
info="Suppress blank outputs at the beginning of the sampling.")
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
info="The initial timestamp cannot be later than this.")
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'βΒΏ([{-",
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
value="\"'.γ,οΌ!οΌ?οΌ:οΌβ)]}γ",
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
value=None,
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
tb_hotwords = gr.Textbox(label="Hotwords", value=None,
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
value=None,
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
precision=0,
info="Number of segments to consider for the language detection.")
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
value=2000)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [mic_input, dd_file_format]
whisper_params = WhisperParameters(
model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device,
length_penalty=nb_length_penalty,
repetition_penalty=nb_repetition_penalty,
no_repeat_ngram_size=nb_no_repeat_ngram_size,
prefix=tb_prefix,
suppress_blank=cb_suppress_blank,
suppress_tokens=tb_suppress_tokens,
max_initial_timestamp=nb_max_initial_timestamp,
word_timestamps=cb_word_timestamps,
prepend_punctuations=tb_prepend_punctuations,
append_punctuations=tb_append_punctuations,
max_new_tokens=nb_max_new_tokens,
chunk_length=nb_chunk_length,
hallucination_silence_threshold=nb_hallucination_silence_threshold,
hotwords=tb_hotwords,
language_detection_threshold=nb_language_detection_threshold,
language_detection_segments=nb_language_detection_segments
)
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("DeepL API"): # sub tab1
with gr.Row():
tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
value="")
with gr.Row():
dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
choices=list(
self.deepl_api.available_source_langs.keys()))
dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
choices=list(
self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
cb_deepl_ispro],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
with gr.TabItem("NLLB"): # sub tab2
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value="facebook/nllb-200-1.3B",
choices=self.nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
choices=self.nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language",
choices=self.nllb_inf.available_target_langs)
with gr.Row():
nb_max_length = gr.Number(label="Max Length Per Line", value=200, precision=0)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang,
nb_max_length, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
# Launch the app with optional gradio settings
launch_args = {}
if self.args.share:
launch_args['share'] = self.args.share
if self.args.server_name:
launch_args['server_name'] = self.args.server_name
if self.args.server_port:
launch_args['server_port'] = self.args.server_port
if self.args.username and self.args.password:
launch_args['auth'] = (self.args.username, self.args.password)
if self.args.root_path:
launch_args['root_path'] = self.args.root_path
launch_args['inbrowser'] = True
self.app.queue(api_open=False).launch(**launch_args)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"),
help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"),
help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
default=os.path.join("models", "Whisper", "insanely-fast-whisper"),
help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=os.path.join("models", "Diarization"),
help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=os.path.join("models", "NLLB"),
help='Directory path of the Facebook NLLB model')
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|