File size: 2,591 Bytes
9fdfe53
 
 
 
 
 
 
 
 
 
 
5f8203e
0e9733d
5f8203e
0e9733d
 
 
5f8203e
 
7ff9bba
 
 
 
0e9733d
7ff9bba
9fdfe53
 
 
 
 
 
 
 
7b06fe8
 
 
 
 
9fdfe53
 
 
7ff9bba
 
0e9733d
 
9fdfe53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8203e
 
 
9fdfe53
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.whisper_parameter import WhisperValues
from modules.utils.paths import WEBUI_DIR
from test_config import *

import requests
import pytest
import gradio as gr
import os


@pytest.mark.parametrize(
    "whisper_type,vad_filter,bgm_separation,diarization",
    [
        ("whisper", False, False, False),
        ("faster-whisper", False, False, False),
        ("insanely_fast_whisper", False, False, False)
    ]
)
def test_transcribe(
    whisper_type: str,
    vad_filter: bool,
    bgm_separation: bool,
    diarization: bool,
):
    audio_path_dir = os.path.join(WEBUI_DIR, "tests")
    audio_path = os.path.join(audio_path_dir, "jfk.wav")
    if not os.path.exists(audio_path):
        download_file(TEST_FILE_DOWNLOAD_URL, audio_path_dir)

    whisper_inferencer = WhisperFactory.create_whisper_inference(
        whisper_type=whisper_type,
    )
    print(
        f"""Whisper Device : {whisper_inferencer.device}"""
        f"""BGM Separation Device: {whisper_inferencer.music_separator.device}"""
        f"""Diarization Device: {whisper_inferencer.diarizer.device}"""
    )

    hparams = WhisperValues(
        model_size=TEST_WHISPER_MODEL,
        vad_filter=vad_filter,
        is_bgm_separate=bgm_separation,
        uvr_enable_offload=True,
        is_diarize=diarization,
    ).as_list()

    subtitle_str, file_path = whisper_inferencer.transcribe_file(
        [audio_path],
        None,
        "SRT",
        False,
        gr.Progress(),
        *hparams,
    )

    assert isinstance(subtitle_str, str) and subtitle_str
    assert isinstance(file_path[0], str) and file_path

    whisper_inferencer.transcribe_youtube(
        TEST_YOUTUBE_URL,
        "SRT",
        False,
        gr.Progress(),
        *hparams,
    )
    assert isinstance(subtitle_str, str) and subtitle_str
    assert isinstance(file_path[0], str) and file_path

    whisper_inferencer.transcribe_mic(
        audio_path,
        "SRT",
        False,
        gr.Progress(),
        *hparams,
    )
    assert isinstance(subtitle_str, str) and subtitle_str
    assert isinstance(file_path[0], str) and file_path


def download_file(url, save_dir):
    if os.path.exists(TEST_FILE_PATH):
        return

    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    file_name = url.split("/")[-1]
    file_path = os.path.join(save_dir, file_name)

    response = requests.get(url)

    with open(file_path, "wb") as file:
        file.write(response.content)

    print(f"File downloaded to: {file_path}")