import os import math import time import torch import torch.nn as nn from torch.nn import functional as F from dataclasses import dataclass from torch.nn.parallel import DistributedDataParallel as DDP import numpy as np from datetime import datetime # Hyperparameters learning_rate = 3e-4 # Peak learning rate min_lr = 3e-5 # Minimum learning rate at the end of training warmup_iters = 2000 # Linear warmup over warmup_iters lr_decay_iters = 800000 # Cosine decay over lr_decay_iters weight_decay = 0.1 # AdamW weight decay beta1 = 0.9 # AdamW beta1 beta2 = 0.95 # AdamW beta2 grad_clip = 1.0 # Clip gradients at this value decay_lr = True # Whether to decay learning rate batch_size = 64 # Training batch size block_size = 256 # Maximum sequence length eval_interval = 500 # How often to evaluate eval_iters = 200 # Number of iterations to use for evaluation log_interval = 10 # How often to print training progress # Model architecture @dataclass class GPTConfig: block_size: int = block_size vocab_size: int = 50304 n_layer: int = 12 n_head: int = 16 n_embd: int = 1024 dropout: float = 0.1 bias: bool = False class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout def forward(self, x): B, T, C = x.size() qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd) )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight # Initialize weights self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() pos = torch.arange(0, t, dtype=torch.long, device=device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: logits = self.lm_head(x[:, [-1], :]) loss = None return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): for _ in range(max_new_tokens): idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx def get_batch(data, block_size, batch_size): ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+1+block_size] for i in ix]) return x, y def get_lr(it): # 1) Linear warmup for warmup_iters steps if it < warmup_iters: return learning_rate * it / warmup_iters # 2) If it > lr_decay_iters, return min learning rate if it > lr_decay_iters: return min_lr # 3) In between, use cosine decay down to min learning rate decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) return min_lr + coeff * (learning_rate - min_lr) def save_training_log(log_entry, filename='training_logs.md'): """Save training logs in markdown format""" timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S') with open(filename, 'a') as f: if not f.tell(): # If file is empty, write header f.write('# Training Logs\n\n') f.write('| Timestamp | Iteration | Training Loss | Learning Rate |\n') f.write('|-----------|------------|---------------|---------------|\n') f.write(f'| {timestamp} | {log_entry["iter"]:10d} | {log_entry["train_loss"]:.6f} | {log_entry["lr"]:.2e} |\n') def save_model(model, optimizer, iter_num, loss, filename): """Save model checkpoint with error handling""" try: # First save to a temporary file tmp_filename = filename + '.tmp' checkpoint = { 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'iter_num': iter_num, 'loss': loss, } # Use torch.save with zip compression torch.save(checkpoint, tmp_filename, _use_new_zipfile_serialization=True) # If save was successful, rename tmp file to final filename if os.path.exists(filename): os.remove(filename) # Remove old file if it exists os.rename(tmp_filename, filename) return True except Exception as e: print(f"Error saving model to {filename}: {str(e)}") # Clean up temp file if it exists if os.path.exists(tmp_filename): try: os.remove(tmp_filename) except: pass return False def main(): torch.manual_seed(1337) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using device: {device}") # Create checkpoint directory os.makedirs('checkpoints', exist_ok=True) # Load the data with open('input.txt', 'r') as f: text = f.read() chars = sorted(list(set(text))) vocab_size = len(chars) stoi = {ch:i for i,ch in enumerate(chars)} itos = {i:ch for i,ch in enumerate(chars)} encode = lambda s: [stoi[c] for c in s] data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9 * len(data)) train_data = data[:n] val_data = data[n:] # Initialize the model model = GPT(GPTConfig(vocab_size=vocab_size)) model = model.to(device) print(f"Model parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M") # Initialize optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(beta1, beta2), weight_decay=weight_decay) # Training loop best_train_loss = float('inf') iter_num = 0 while True: # Get batch and learning rate xb, yb = get_batch(train_data, block_size, batch_size) xb, yb = xb.to(device), yb.to(device) lr = get_lr(iter_num) if decay_lr else learning_rate for param_group in optimizer.param_groups: param_group['lr'] = lr # Forward pass logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) optimizer.step() # Logging and model saving if iter_num % log_interval == 0: train_loss = loss.item() print(f"iter {iter_num}: loss {train_loss:.4f}, lr {lr:e}") save_training_log({ "iter": iter_num, "train_loss": train_loss, "lr": lr }) # Save model if loss improved if train_loss < best_train_loss: best_train_loss = train_loss print(f"Saving model with training loss: {best_train_loss:.6f}") # Save the latest model save_model( model, optimizer, iter_num, best_train_loss, os.path.join('checkpoints', 'latest_model.pt') ) if best_train_loss < 0.099999: print(f"Achieved target loss of {best_train_loss:.6f}") break iter_num += 1 if iter_num > lr_decay_iters: break if __name__ == '__main__': main()