Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,956 Bytes
6e5e1d5 f423428 fd83843 6e5e1d5 fd83843 10437bc 6e5e1d5 add09dc 6e5e1d5 10437bc fd83843 6e5e1d5 a9bb828 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 a9bb828 6e5e1d5 add09dc 6e5e1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces
from diffusers.pipelines import Lumina2Text2ImgPipeline
from diffusers.models.transformers.transformer_lumina2 import Lumina2Transformer2DModel
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler
)
from diffusers.loaders.single_file_utils import (
convert_sd3_transformer_checkpoint_to_diffusers,
)
from transformers import (
Gemma2Model,
GemmaTokenizer
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
###
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = Gemma2Model.from_pretrained(model_repo_id, subfolder="text_encoder")
transformer = Lumina2Transformer2DModel.from_pretrained(model_repo_id, subfolder="transformer")
tokenizer = GemmaTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")
###
pipe = Lumina2Text2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
tokenizer=tokenizer,
scheduler=scheduler,
)
pipe.to(device, torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.0,
num_inference_steps=50,
cfg_normalization=True,
cfg_trunc_ratio=0.25,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
cfg_normalization=cfg_normalization,
cfg_trunc_ratio=cfg_trunc_ratio,
generator=generator,
).images[0]
return image, seed
examples = [
"A serene photograph capturing the golden reflection of the sun on a vast expanse of water. The sun is positioned at the top center, casting a brilliant, shimmering trail of light across the rippling surface. The water is textured with gentle waves, creating a rhythmic pattern that leads the eye towards the horizon. The entire scene is bathed in warm, golden hues, enhancing the tranquil and meditative atmosphere. High contrast, natural lighting, golden hour, photorealistic, expansive composition, reflective surface, peaceful, visually harmonious.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Lumina Image v2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by [Alpha-VLLM](https://huggingface.co/Alpha-VLLM)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
with gr.Row():
cfg_normalization = gr.Checkbox(
label="CFG Normalization",
value=True
)
cfg_trunc_ratio = gr.Slider(
label="CFG Truncation Ratio",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
cfg_normalization,
cfg_trunc_ratio,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|