Spaces:
Sleeping
Sleeping
Add activation choice
Browse files- chatbot_constructor.py +3 -2
chatbot_constructor.py
CHANGED
@@ -30,7 +30,7 @@ def todset(text: str):
|
|
30 |
def hash_str(data: str):
|
31 |
return hashlib.md5(data.encode('utf-8')).hexdigest()
|
32 |
|
33 |
-
def train(message: str = "", regularization: float = 0.0001, dropout: float = 0.1, learning_rate: float = 0.001, epochs: int = 16, emb_size: int = 128, input_len: int = 16, kernels_count: int = 8, kernel_size: int = 8, left_padding: bool = True, data: str = ""):
|
34 |
data_hash = None
|
35 |
if "→" not in data or "\n" not in data:
|
36 |
if data in os.listdir("cache"):
|
@@ -77,7 +77,7 @@ def train(message: str = "", regularization: float = 0.0001, dropout: float = 0.
|
|
77 |
dropout5_layer = Dropout(dropout)(dense3_layer)
|
78 |
dense4_layer = Dense(100, activation="tanh", kernel_regularizer=L1(regularization))(dropout5_layer)
|
79 |
concat2_layer = Concatenate()([dense4_layer, prelu1_layer, attn_flatten_layer, conv1_flatten_layer])
|
80 |
-
dense4_layer = Dense(resps_len, activation=
|
81 |
model = Model(inputs=input_layer, outputs=dense4_layer)
|
82 |
|
83 |
X = []
|
@@ -117,6 +117,7 @@ if __name__ == "__main__":
|
|
117 |
gr.inputs.Slider(1, 128, default=64, step=1, label="Convolution kernel count"),
|
118 |
gr.inputs.Slider(1, 16, default=8, step=1, label="Convolution kernel size"),
|
119 |
gr.inputs.Checkbox(False, label="Use left padding"),
|
|
|
120 |
"text"],
|
121 |
outputs="text")
|
122 |
iface.launch()
|
|
|
30 |
def hash_str(data: str):
|
31 |
return hashlib.md5(data.encode('utf-8')).hexdigest()
|
32 |
|
33 |
+
def train(message: str = "", regularization: float = 0.0001, dropout: float = 0.1, learning_rate: float = 0.001, epochs: int = 16, emb_size: int = 128, input_len: int = 16, kernels_count: int = 8, kernel_size: int = 8, left_padding: bool = True, end_activation: str = "softmax", data: str = ""):
|
34 |
data_hash = None
|
35 |
if "→" not in data or "\n" not in data:
|
36 |
if data in os.listdir("cache"):
|
|
|
77 |
dropout5_layer = Dropout(dropout)(dense3_layer)
|
78 |
dense4_layer = Dense(100, activation="tanh", kernel_regularizer=L1(regularization))(dropout5_layer)
|
79 |
concat2_layer = Concatenate()([dense4_layer, prelu1_layer, attn_flatten_layer, conv1_flatten_layer])
|
80 |
+
dense4_layer = Dense(resps_len, activation=end_activation, kernel_regularizer=L1(regularization))(concat2_layer)
|
81 |
model = Model(inputs=input_layer, outputs=dense4_layer)
|
82 |
|
83 |
X = []
|
|
|
117 |
gr.inputs.Slider(1, 128, default=64, step=1, label="Convolution kernel count"),
|
118 |
gr.inputs.Slider(1, 16, default=8, step=1, label="Convolution kernel size"),
|
119 |
gr.inputs.Checkbox(False, label="Use left padding"),
|
120 |
+
gr.inputs.Radio(['softmax', 'sigmoid', 'linear', 'softplus', 'exponential', 'log_softmax'], label="Use left padding"),
|
121 |
"text"],
|
122 |
outputs="text")
|
123 |
iface.launch()
|