Spaces:
Sleeping
Sleeping
Improving generalization on small datasets
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from keras_self_attention import SeqSelfAttention, SeqWeightedAttention
|
|
8 |
|
9 |
emb_size = 128
|
10 |
inp_len = 16
|
|
|
11 |
|
12 |
def train(data: str, message: str):
|
13 |
if "→" not in data or "\n" not in data:
|
@@ -34,11 +35,12 @@ def train(data: str, message: str):
|
|
34 |
y = []
|
35 |
|
36 |
for key in dset:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
X = np.array(X)
|
44 |
y = np.array(y)
|
|
|
8 |
|
9 |
emb_size = 128
|
10 |
inp_len = 16
|
11 |
+
maxshift = 4
|
12 |
|
13 |
def train(data: str, message: str):
|
14 |
if "→" not in data or "\n" not in data:
|
|
|
35 |
y = []
|
36 |
|
37 |
for key in dset:
|
38 |
+
for p in range(maxshift):
|
39 |
+
tokens = tokenizer.texts_to_sequences([key,])[0]
|
40 |
+
X.append(np.array(([0,]*p+list(tokens)+[0,]*inp_len)[:inp_len]))
|
41 |
+
output_array = np.zeros(resps_len)
|
42 |
+
output_array[dset[key]] = 1
|
43 |
+
y.append(output_array)
|
44 |
|
45 |
X = np.array(X)
|
46 |
y = np.array(y)
|