from flask import Flask, request, jsonify import joblib import pandas as pd # Load the model model = joblib.load('investment_model.pkl') from flask_cors import CORS # Add this import app = Flask(__name__) CORS(app) def get_investment_advice(model, user_inputs): user_data = pd.DataFrame([user_inputs]) # Make prediction using the model predictions = model.predict(user_data) advice = predictions[0] return advice @app.route('/predict/stock', methods=['POST']) def predict(): try: data = request.get_json() user_inputs = { 'Age_Group': data['Age_Group'], 'Risk_Level': data['Risk_Level'], 'Amount_to_Invest': data['Amount_to_Invest'], 'Investment_Term': data['Investment_Term'], 'Diversity_Option': data['Diversity_Option'] } advice = get_investment_advice(model, user_inputs) return jsonify({'Investment Advice': advice}) except Exception as e: print(f"Error: {e}") return jsonify({'error': 'An error occurred'}), 500 if __name__ == '__main__': app.run(debug=True, port=5002)