|
from flask import Flask, request, jsonify
|
|
import joblib
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
model = joblib.load('investment_model.pkl')
|
|
|
|
from flask_cors import CORS
|
|
app = Flask(__name__)
|
|
CORS(app)
|
|
def get_investment_advice(model, user_inputs):
|
|
user_data = pd.DataFrame([user_inputs])
|
|
|
|
|
|
predictions = model.predict(user_data)
|
|
advice = predictions[0]
|
|
return advice
|
|
|
|
@app.route('/predict/stock', methods=['POST'])
|
|
def predict():
|
|
try:
|
|
data = request.get_json()
|
|
user_inputs = {
|
|
'Age_Group': data['Age_Group'],
|
|
'Risk_Level': data['Risk_Level'],
|
|
'Amount_to_Invest': data['Amount_to_Invest'],
|
|
'Investment_Term': data['Investment_Term'],
|
|
'Diversity_Option': data['Diversity_Option']
|
|
}
|
|
advice = get_investment_advice(model, user_inputs)
|
|
return jsonify({'Investment Advice': advice})
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
return jsonify({'error': 'An error occurred'}), 500
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True, port=5002)
|
|
|