File size: 4,035 Bytes
20ed832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import sys

sys.path.insert(0, 'StyleSwin')

import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
from models.generator import Generator

TOKEN = os.environ['TOKEN']

MODEL_REPO = 'hysts/StyleSwin'
MODEL_NAMES = [
    'CelebAHQ_256',
    'FFHQ_256',
    'LSUNChurch_256',
    'CelebAHQ_1024',
    'FFHQ_1024',
]


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_model(model_name: str, device: torch.device) -> nn.Module:
    size = int(model_name.split('_')[1])
    channel_multiplier = 1 if size == 1024 else 2
    model = Generator(size,
                      style_dim=512,
                      n_mlp=8,
                      channel_multiplier=channel_multiplier)
    ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                                f'models/{model_name}.pt',
                                                use_auth_token=TOKEN)
    ckpt = torch.load(ckpt_path)
    model.load_state_dict(ckpt['g_ema'])
    model.to(device)
    model.eval()
    return model


def generate_z(seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, 512)).to(device).float()


def postprocess(tensors: torch.Tensor) -> torch.Tensor:
    assert tensors.dim() == 4
    tensors = tensors.cpu()
    std = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None]
    mean = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None]
    tensors = tensors * std + mean
    tensors = (tensors * 255).clamp(0, 255).to(torch.uint8)
    return tensors


@torch.inference_mode()
def generate_image(model_name: str, seed: int, model_dict: dict,
                   device: torch.device) -> PIL.Image.Image:
    model = model_dict[model_name]
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
    z = generate_z(seed, device)
    out, _ = model(z)
    out = postprocess(out)
    out = out.numpy()[0].transpose(1, 2, 0)
    return PIL.Image.fromarray(out, 'RGB')


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    model_dict = {name: load_model(name, device) for name in MODEL_NAMES}

    func = functools.partial(generate_image,
                             model_dict=model_dict,
                             device=device)
    func = functools.update_wrapper(func, generate_image)

    repo_url = 'https://github.com/microsoft/StyleSwin'
    title = 'microsoft/StyleSwin'
    description = f'A demo for {repo_url}'
    article = None

    gr.Interface(
        func,
        [
            gr.inputs.Radio(MODEL_NAMES,
                            type='value',
                            default='FFHQ_256',
                            label='model',
                            optional=False),
            gr.inputs.Slider(0, 2147483647, step=1, default=0, label='Seed'),
        ],
        gr.outputs.Image(type='pil', label='Output'),
        theme=args.theme,
        title=title,
        description=description,
        article=article,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()