|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from optimum.intel import OVModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
|
|
model_id = "hsuwill000/Qwen2.5-3B-Instruct-openvino" |
|
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
|
|
|
|
def respond(prompt , history): |
|
|
|
|
|
|
|
|
|
messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
{"role": "user", "content": prompt } |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
|
|
|
|
|
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
print(f"Messages: {messages}") |
|
print(f"Reply: {response}") |
|
return response |
|
|
|
|
|
demo = gr.ChatInterface(fn=respond, title="Qwen2.5-0.5B-Instruct-openvino-4bit", description="Qwen2.5-0.5B-Instruct-openvino-4bit", type='messages') |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |