import argparse from concurrent.futures import ThreadPoolExecutor import torch import torch.multiprocessing as mp from tqdm import tqdm from config import config from style_bert_vits2.constants import Languages from style_bert_vits2.logging import logger from style_bert_vits2.models import commons from style_bert_vits2.models.hyper_parameters import HyperParameters from style_bert_vits2.nlp import ( bert_models, cleaned_text_to_sequence, extract_bert_feature, ) from style_bert_vits2.nlp.japanese import pyopenjtalk_worker from style_bert_vits2.nlp.japanese.user_dict import update_dict from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT # このプロセスからはワーカーを起動して辞書を使いたいので、ここで初期化 pyopenjtalk_worker.initialize_worker() # dict_data/ 以下の辞書データを pyopenjtalk に適用 update_dict() def process_line(x: tuple[str, bool]): line, add_blank = x device = config.bert_gen_config.device if config.bert_gen_config.use_multi_device: rank = mp.current_process()._identity rank = rank[0] if len(rank) > 0 else 0 if torch.cuda.is_available(): gpu_id = rank % torch.cuda.device_count() device = f"cuda:{gpu_id}" else: device = "cpu" wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") phone = phones.split(" ") tone = [int(i) for i in tone.split(" ")] word2ph = [int(i) for i in word2ph.split(" ")] word2ph = [i for i in word2ph] phone, tone, language = cleaned_text_to_sequence( phone, tone, Languages[language_str] ) if add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt") try: bert = torch.load(bert_path) assert bert.shape[-1] == len(phone) except Exception: bert = extract_bert_feature(text, word2ph, language_str, device) assert bert.shape[-1] == len(phone) torch.save(bert, bert_path) preprocess_text_config = config.preprocess_text_config if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-c", "--config", type=str, default=config.bert_gen_config.config_path ) args, _ = parser.parse_known_args() config_path = args.config hps = HyperParameters.load_from_json(config_path) lines: list[str] = [] with open(hps.data.training_files, "r", encoding="utf-8") as f: lines.extend(f.readlines()) with open(hps.data.validation_files, "r", encoding="utf-8") as f: lines.extend(f.readlines()) add_blank = [hps.data.add_blank] * len(lines) if len(lines) != 0: # pyopenjtalkの別ワーカー化により、並列処理でエラーがでる模様なので、一旦シングルスレッド強制にする num_processes = 1 with ThreadPoolExecutor(max_workers=num_processes) as executor: _ = list( tqdm( executor.map(process_line, zip(lines, add_blank)), total=len(lines), file=SAFE_STDOUT, ) ) logger.info(f"bert.pt is generated! total: {len(lines)} bert.pt files.")