heysho's picture
Update app.py
74ebfc9 verified
raw
history blame
3.98 kB
import traceback
import streamlit as st
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
PROMPT = """
## Task: Provide detailed and personalized career advice based on the user's current situation and aspirations.
## User Information:
- Current Career Status: {input_status}
- Career Goals: {input_goal}
- Skills and Experience: {input_skill}
- Interests: {input_interest}
- Preferred Work Environment: {input_environment}
- Location: {input_location}
- Challenges: {input_challenges}
## Objective: Offer actionable and supportive career advice that helps the user achieve both their short-term and long-term goals. Include strategies for overcoming challenges, leveraging skills, and aligning with their interests and preferred work environment. Provide specific tips and recommendations tailored to the user's unique context.
## Additional: Ensure the advice is clear, practical, and tailored to assist the user in making informed decisions about their career path.
"""
def init_page():
st.set_page_config(
page_title="Career Advice AI Agent",
page_icon="🧘"
)
st.header("Career Advice AI Agent🧘")
def select_model(temperature=0):
models = ("GPT-4o","GPT-4o-mini", "Claude 3.5 Sonnet", "Gemini 1.5 Pro")
model_choice = st.radio("Choose a model:", models)
if model_choice == "GPT-4o":
return ChatOpenAI(temperature=temperature, model_name="gpt-4o")
elif model_choice == "GPT-4o-mini":
return ChatOpenAI(temperature=temperature, model_name="gpt-4o-mini")
elif model_choice == "Claude 3.5 Sonnet":
return ChatAnthropic(temperature=temperature, model_name="claude-3-5-sonnet-20240620")
elif model_choice == "Gemini 1.5 Pro":
return ChatGoogleGenerativeAI(temperature=temperature, model="gemini-1.5-pro-latest")
def init_chain():
llm = select_model()
prompt = ChatPromptTemplate.from_messages([
("user", PROMPT),
])
output_parser = StrOutputParser()
chain = prompt | llm | output_parser
return chain
def main():
init_page()
# Style adjustments (optional, remove if not needed)
st.markdown("""<style>.st-emotion-cache-15ecox0 { display: none !important; }
@media (max-width: 50.5rem) {.st-emotion-cache-13ln4jf {max-width: calc(0rem + 100vw);}}
</style>""",unsafe_allow_html=True,)
chain = init_chain()
if chain:
input_status = st.selectbox("Current Career Status",("Student", "Entry-Level Employee", "Senior-Level Employee", "Career Changer", "Unemployed/Job Seeker", "Entrepreneur"),key="input_status")
input_goal = st.text_input("Career Goals (e.g., Become recognized as an expert in digital marketing field)", key="input_goal")
input_skill = st.text_input("Skills and Experience (e.g., SEO and digital marketing)", key="input_skill")
input_interest = st.text_input("Interests (e.g., Data Science and Python)", key="input_interest")
input_environment = st.selectbox("Preferred work environment",("Corporate Office", "Startup", "Remote Work", "Freelance/Contract", "Government/Public Sector"),key="input_environment")
input_location = st.text_input("Location (e.g., Tokyo)", key="input_location")
input_challenges = st.text_input("Challenges (e.g., High competition for jobs in the field, making it difficult to stand out to employers.)", key="input_challenges")
if st.button("Submit"):
result = chain.stream({"input_status": input_status, "input_goal": input_goal, "input_skill": input_skill, "input_interest": input_interest, "input_environment": input_environment, "input_location": input_location, "input_challenges": input_challenges})
st.write(result)
if __name__ == '__main__':
main()