Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
|
6 |
+
# Load pre-trained model and tokenizer
|
7 |
+
model_name = "facebook/wav2vec2-base-960h"
|
8 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
9 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def speech_to_text(audio):
|
12 |
+
# Load audio file
|
13 |
+
waveform, rate = torchaudio.load(audio.name)
|
14 |
+
|
15 |
+
# Ensure the audio is mono
|
16 |
+
if waveform.shape[0] > 1:
|
17 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
18 |
+
|
19 |
+
# Resample to 16000 Hz
|
20 |
+
resampler = torchaudio.transforms.Resample(orig_freq=rate, new_freq=16000)
|
21 |
+
waveform = resampler(waveform)
|
22 |
+
|
23 |
+
# Tokenize the waveform
|
24 |
+
inputs = tokenizer(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000)
|
25 |
+
|
26 |
+
# Perform inference
|
27 |
+
with torch.no_grad():
|
28 |
+
logits = model(**inputs).logits
|
29 |
+
|
30 |
+
# Decode the output
|
31 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
32 |
+
transcription = tokenizer.batch_decode(predicted_ids)[0]
|
33 |
+
|
34 |
+
return transcription
|
35 |
+
|
36 |
+
# Create Gradio interface
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=speech_to_text,
|
39 |
+
inputs=gr.inputs.Audio(source="microphone", type="file"),
|
40 |
+
outputs="text",
|
41 |
+
live=True,
|
42 |
+
title="Speech to Text",
|
43 |
+
description="Speak into your microphone and get the transcribed text."
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the interface
|
47 |
+
iface.launch()
|