File size: 5,886 Bytes
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
e1e7179
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fdcdb0
1cc6224
 
5f3c536
ff9d83f
 
 
 
1cc6224
 
 
49659c3
1cc6224
 
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
 
 
 
 
 
d53f1f5
1cc6224
 
 
 
 
 
 
 
f462c37
1cc6224
8bed91e
1cc6224
 
 
1cc0b1d
33e75cb
ad4627a
33e75cb
2bec498
136383c
80fcf4c
136383c
2bec498
1cc6224
 
 
5cf7645
6e8d12f
1cc6224
 
 
 
 
 
26662ab
 
f462c37
1cc6224
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are Harmony, a friendly and casual music chatbot for teens who gives singers and bands recommendations based on users' emotions."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing artist reccomendations based on users' emotions, moods, and favorite genre.
    """
    try:
        user_message = f"Here's your reccomendations: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=500,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome, my name is Harmony! How are you feeling today?"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶 Welcome! This is Harmony, here to give you artist recommendations based on how you feel!

## Your AI-driven assistant for artist reccomendations based on your mood. Created by Alexis, Nathalie, and Joanna of the 2024 Kode With Klossy Camp. 
"""

topics = """
### ** Instructions
* Let me know how you feel. 
* Try to be as specific as possible.
* Use one word to describe your feelings.

### Disclaimer 
Our chatbot is just here to give music suggestions based on how you feel. Our chatbot is **NOT MADE BY PROFESSIONALS AND IS NOT A SUBSTITUTE FOR THERAPY.** If you feel like you have any mental health issues, please seek professional help.

I'll do my best to help find some artists for you! If you want a different reccomendation, feel free to let me know!
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='ParityError/Interstellar') as demo:
    gr.Image("music_is_therapy.png", show_label = False, show_share_button = False, show_download_button = False)
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Type Below", placeholder="How are you feeling today?")
            answer = gr.Textbox(label="Harmony's Response", placeholder="Harmony will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Find Your Artists Here!")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)