Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import shutil | |
from loguru import logger | |
from utils.chatpdf import ChatPDF | |
import hashlib | |
from utils.llm import LLM | |
from models import MAX_INPUT_LEN, models | |
pwd_path = os.path.abspath(os.path.dirname(__file__)) | |
CONTENT_DIR = os.path.join(pwd_path, "content") | |
logger.info(f"CONTENT_DIR: {CONTENT_DIR}") | |
VECTOR_SEARCH_TOP_K = 3 | |
def get_file_list(): | |
if not os.path.exists("content"): | |
return [] | |
return [f for f in os.listdir("content") if | |
f.endswith(".txt") or f.endswith(".pdf") or f.endswith(".docx") or f.endswith(".md")] | |
def upload_file(file, file_list): | |
if not os.path.exists(CONTENT_DIR): | |
os.mkdir(CONTENT_DIR) | |
filename = os.path.basename(file.name) | |
shutil.move(file.name, os.path.join(CONTENT_DIR, filename)) | |
# file_list首位插入新上传的文件 | |
file_list.insert(0, filename) | |
return gr.Dropdown.update(choices=file_list, value=filename), file_list | |
def parse_text(text): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) | |
return text | |
def get_answer( | |
query, | |
index_path, | |
history, | |
topn: int = VECTOR_SEARCH_TOP_K, | |
max_input_size: int = 1024, | |
chat_mode: str = "pdf" | |
): | |
if not models.is_active(): | |
return [None, "模型还未加载"], query | |
if index_path and chat_mode == "pdf": | |
if not models.chatpdf.sim_model.corpus_embeddings: | |
models.chatpdf.load_index(index_path) | |
response, empty_history, reference_results = models.chatpdf.query( | |
llm_model=models.llm_model, | |
query=query, | |
topn=topn, | |
max_input_size=max_input_size | |
) | |
logger.debug(f"query: {query}, response with content: {response}") | |
for i in range(len(reference_results)): | |
r = reference_results[i] | |
response += f"\n{r.strip()}" | |
response = parse_text(response) | |
history = history + [[query, response]] | |
else: | |
# 未加载文件,仅返回生成模型结果 | |
response, empty_history = models.llm_model.chat(query, history) | |
response = parse_text(response) | |
history = history + [[query, response]] | |
logger.debug(f"query: {query}, response: {response}") | |
return history, "" | |
def update_status(history, status): | |
history = history + [[None, status]] | |
logger.info(status) | |
return history | |
def get_file_hash(fpath): | |
return hashlib.md5(open(fpath, 'rb').read()).hexdigest() | |
def get_vector_store(filepath, history, embedding_model): | |
logger.info(filepath, history) | |
index_path = None | |
file_status = '' | |
if models.chatpdf is not None: | |
local_file_path = os.path.join(CONTENT_DIR, filepath) | |
local_file_hash = get_file_hash(local_file_path) | |
index_file_name = f"{filepath}.{embedding_model}.{local_file_hash}.index.json" | |
local_index_path = os.path.join(CONTENT_DIR, index_file_name) | |
if os.path.exists(local_index_path): | |
models.chatpdf.load_index(local_index_path) | |
index_path = local_index_path | |
file_status = "文件已成功加载,请开始提问" | |
elif os.path.exists(local_file_path): | |
models.chatpdf.load_pdf_file(local_file_path) | |
models.chatpdf.save_index(local_index_path) | |
index_path = local_index_path | |
if index_path: | |
file_status = "文件索引并成功加载,请开始提问" | |
else: | |
file_status = "文件未成功加载,请重新上传文件" | |
else: | |
file_status = "模型未完成加载,请先在加载模型后再导入文件" | |
return index_path, history + [[None, file_status]] | |
def reset_chat(chatbot, state): | |
return None, None | |
init_message = """欢迎使用 ChatPDF Web UI,可以直接提问或上传文件后提问 """ | |
def chat_ui(embedding_model): | |
index_path, file_status, model_status = gr.State(""), gr.State(""), gr.State("") | |
file_list = gr.State(get_file_list()) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot([[None, init_message], [None, None]], | |
elem_id="chat-box", | |
show_label=False).style(height=700) | |
query = gr.Textbox( | |
show_label=False, | |
placeholder="请输入提问内容,按回车进行提交", | |
).style(container=False) | |
clear_btn = gr.Button('🔄Clear!', elem_id='clear').style(full_width=True) | |
with gr.Column(scale=1): | |
with gr.Row(): | |
chat_mode = gr.Radio(choices=["chat", "pdf"], value="pdf", label="聊天模式") | |
with gr.Row(): | |
topn = gr.Slider(1, 100, 20, step=1, label="最大搜索数量") | |
max_input_size = gr.Slider(512, 4096, MAX_INPUT_LEN, step=10, label="摘要最大长度") | |
with gr.Tab("select"): | |
with gr.Row(): | |
selectFile = gr.Dropdown( | |
file_list.value, | |
label="content file", | |
interactive=True, | |
value=file_list.value[0] if len(file_list.value) > 0 else None | |
) | |
# get_file_list_btn = gr.Button('🔄').style(width=10) | |
with gr.Tab("upload"): | |
file = gr.File( | |
label="content file", | |
file_types=['.txt', '.md', '.docx', '.pdf'] | |
) | |
load_file_button = gr.Button("加载文件") | |
# 将上传的文件保存到content文件夹下,并更新下拉框 | |
file.upload( | |
upload_file, | |
inputs=[file, file_list], | |
outputs=[selectFile, file_list] | |
) | |
load_file_button.click( | |
get_vector_store, | |
show_progress=True, | |
inputs=[selectFile, chatbot, embedding_model], | |
outputs=[index_path, chatbot], | |
) | |
query.submit( | |
get_answer, | |
[query, index_path, chatbot, topn, max_input_size, chat_mode], | |
[chatbot, query], | |
) | |
clear_btn.click(reset_chat, [chatbot, query], [chatbot, query]) | |