File size: 6,386 Bytes
90d7edb
8edfc45
 
 
 
ee7ace1
d2285c1
8b4d92e
d2285c1
 
ee7ace1
 
def395e
 
90d7edb
def395e
 
 
ee7ace1
8edfc45
 
 
 
63a0483
ee7ace1
 
9cacd96
ee7ace1
d2285c1
ee7ace1
 
d2285c1
 
ee7ace1
 
 
d2285c1
ee7ace1
 
d2285c1
ee7ace1
 
 
 
 
63a0483
ee7ace1
8edfc45
d2285c1
8edfc45
 
ee7ace1
def395e
ee7ace1
 
8edfc45
63a0483
ee7ace1
 
 
8edfc45
 
63a0483
c624cbc
def395e
9cacd96
 
 
def395e
 
 
d2285c1
def395e
63a0483
9cacd96
 
 
def395e
63a0483
def395e
8edfc45
def395e
 
 
8edfc45
def395e
8edfc45
 
def395e
 
ee7ace1
c0d4e9e
8edfc45
 
63a0483
 
9cacd96
63a0483
 
 
9cacd96
63a0483
 
 
 
 
 
 
 
 
 
def395e
8edfc45
 
 
 
 
ee7ace1
c0d4e9e
8edfc45
 
63a0483
8edfc45
 
 
 
 
9cacd96
63a0483
 
ee7ace1
9cacd96
63a0483
9cacd96
 
63a0483
 
ee7ace1
 
8edfc45
63a0483
8edfc45
d2285c1
ee7ace1
d2285c1
ee7ace1
 
 
8edfc45
ee7ace1
8edfc45
d2285c1
 
8edfc45
 
ee7ace1
 
8edfc45
 
 
63a0483
 
8edfc45
 
 
63a0483
 
 
 
 
 
8edfc45
 
63a0483
7f5cb1a
 
 
 
63a0483
 
7f5cb1a
 
 
63a0483
7f5cb1a
63a0483
 
 
 
c0d4e9e
 
7f5cb1a
 
 
c0d4e9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator

# Translator instance
translator = GoogleTranslator(source="auto", target="es")

# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
    SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]

with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
    OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]

# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]


def get_keywords_by_language(text: str):
    """
    Detect language using `langdetect` and translate keywords if needed.
    """
    snippet = text[:200]  # Use a snippet for detection
    try:
        detected_lang = detect(snippet)
    except Exception:
        detected_lang = "en"  # Default to English if detection fails

    if detected_lang == "es":
        smishing_in_spanish = [
            translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
        ]
        other_scam_in_spanish = [
            translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
        ]
        return smishing_in_spanish, other_scam_in_spanish, "es"
    else:
        return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"


def boost_probabilities(probabilities: dict, text: str):
    """
    Boost probabilities based on keyword matches and presence of URLs.
    """
    lower_text = text.lower()
    smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)

    smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
    other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)

    # Example: 30% per found keyword
    smishing_boost = 0.30 * smishing_count
    other_scam_boost = 0.30 * other_scam_count

    found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
    if found_urls:
        # 35% boost for Smishing if there's a URL
        smishing_boost += 0.35

    p_smishing = probabilities.get("SMiShing", 0.0)
    p_other_scam = probabilities.get("Other Scam", 0.0)
    p_legit = probabilities.get("Legitimate", 1.0)

    p_smishing += smishing_boost
    p_other_scam += other_scam_boost
    p_legit -= (smishing_boost + other_scam_boost)

    # Clamp to 0
    p_smishing = max(p_smishing, 0.0)
    p_other_scam = max(p_other_scam, 0.0)
    p_legit = max(p_legit, 0.0)

    # Re-normalize
    total = p_smishing + p_other_scam + p_legit
    if total > 0:
        p_smishing /= total
        p_other_scam /= total
        p_legit /= total
    else:
        p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0

    return {
        "SMiShing": p_smishing,
        "Other Scam": p_other_scam,
        "Legitimate": p_legit,
        "detected_lang": detected_lang
    }


def smishing_detector(input_type, text, image):
    """
    Main detection function:
      - If input_type == "Text": use `text` as the message
      - If input_type == "Screenshot": use OCR on `image` to get text
    """
    if input_type == "Text":
        # Use the pasted text
        combined_text = text.strip() if text else ""
    else:
        # input_type == "Screenshot"
        if image is not None:
            ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
            combined_text = ocr_text.strip()
        else:
            combined_text = ""

    if not combined_text:
        return {
            "text_used_for_classification": "(none)",
            "label": "No text provided",
            "confidence": 0.0,
            "keywords_found": [],
            "urls_found": []
        }

    # Zero-shot classification
    result = classifier(
        sequences=combined_text,
        candidate_labels=CANDIDATE_LABELS,
        hypothesis_template="This message is {}."
    )
    original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}

    # Boost logic
    boosted = boost_probabilities(original_probs, combined_text)

    # Convert to float
    boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
    detected_lang = boosted.pop("detected_lang", "en")

    # Final classification
    final_label = max(boosted, key=boosted.get)
    final_confidence = round(boosted[final_label], 3)

    # For display
    lower_text = combined_text.lower()
    smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)

    found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
    found_smishing = [kw for kw in smishing_keys if kw in lower_text]
    found_other_scam = [kw for kw in scam_keys if kw in lower_text]

    return {
        "detected_language": detected_lang,
        "text_used_for_classification": combined_text,
        "original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
        "boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
        "label": final_label,
        "confidence": final_confidence,
        "smishing_keywords_found": found_smishing,
        "other_scam_keywords_found": found_other_scam,
        "urls_found": found_urls,
    }


# Create a Radio for user choice + text input + image input
demo = gr.Interface(
    fn=smishing_detector,
    inputs=[
        gr.Radio(
            choices=["Text", "Screenshot"],
            label="Choose input type",
            value="Text",  # default
            info="Select 'Text' to paste a message, or 'Screenshot' to upload an image."
        ),
        gr.Textbox(
            lines=3,
            label="Paste Suspicious SMS Text",
            placeholder="Type or paste the message here..."
        ),
        gr.Image(
            type="pil",
            label="Upload a Screenshot",
            tool="editor"
        )
    ],
    outputs="json",
    title="SMiShing & Scam Detector",
    description="""
Select "Text" or "Screenshot" above. 
- If "Text", only use the textbox. 
- If "Screenshot", only upload an image. 
The app will classify the message as SMiShing, Other Scam, or Legitimate.
""",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch()