File size: 6,386 Bytes
90d7edb 8edfc45 ee7ace1 d2285c1 8b4d92e d2285c1 ee7ace1 def395e 90d7edb def395e ee7ace1 8edfc45 63a0483 ee7ace1 9cacd96 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 63a0483 ee7ace1 8edfc45 d2285c1 8edfc45 ee7ace1 def395e ee7ace1 8edfc45 63a0483 ee7ace1 8edfc45 63a0483 c624cbc def395e 9cacd96 def395e d2285c1 def395e 63a0483 9cacd96 def395e 63a0483 def395e 8edfc45 def395e 8edfc45 def395e 8edfc45 def395e ee7ace1 c0d4e9e 8edfc45 63a0483 9cacd96 63a0483 9cacd96 63a0483 def395e 8edfc45 ee7ace1 c0d4e9e 8edfc45 63a0483 8edfc45 9cacd96 63a0483 ee7ace1 9cacd96 63a0483 9cacd96 63a0483 ee7ace1 8edfc45 63a0483 8edfc45 d2285c1 ee7ace1 d2285c1 ee7ace1 8edfc45 ee7ace1 8edfc45 d2285c1 8edfc45 ee7ace1 8edfc45 63a0483 8edfc45 63a0483 8edfc45 63a0483 7f5cb1a 63a0483 7f5cb1a 63a0483 7f5cb1a 63a0483 c0d4e9e 7f5cb1a c0d4e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
def get_keywords_by_language(text: str):
"""
Detect language using `langdetect` and translate keywords if needed.
"""
snippet = text[:200] # Use a snippet for detection
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en" # Default to English if detection fails
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches and presence of URLs.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
# Example: 30% per found keyword
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
if found_urls:
# 35% boost for Smishing if there's a URL
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
# Clamp to 0
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
# Re-normalize
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang
}
def smishing_detector(input_type, text, image):
"""
Main detection function:
- If input_type == "Text": use `text` as the message
- If input_type == "Screenshot": use OCR on `image` to get text
"""
if input_type == "Text":
# Use the pasted text
combined_text = text.strip() if text else ""
else:
# input_type == "Screenshot"
if image is not None:
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
combined_text = ocr_text.strip()
else:
combined_text = ""
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": []
}
# Zero-shot classification
result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
# Boost logic
boosted = boost_probabilities(original_probs, combined_text)
# Convert to float
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
detected_lang = boosted.pop("detected_lang", "en")
# Final classification
final_label = max(boosted, key=boosted.get)
final_confidence = round(boosted[final_label], 3)
# For display
lower_text = combined_text.lower()
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
"label": final_label,
"confidence": final_confidence,
"smishing_keywords_found": found_smishing,
"other_scam_keywords_found": found_other_scam,
"urls_found": found_urls,
}
# Create a Radio for user choice + text input + image input
demo = gr.Interface(
fn=smishing_detector,
inputs=[
gr.Radio(
choices=["Text", "Screenshot"],
label="Choose input type",
value="Text", # default
info="Select 'Text' to paste a message, or 'Screenshot' to upload an image."
),
gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text",
placeholder="Type or paste the message here..."
),
gr.Image(
type="pil",
label="Upload a Screenshot",
tool="editor"
)
],
outputs="json",
title="SMiShing & Scam Detector",
description="""
Select "Text" or "Screenshot" above.
- If "Text", only use the textbox.
- If "Screenshot", only upload an image.
The app will classify the message as SMiShing, Other Scam, or Legitimate.
""",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch() |