Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification | |
import torch | |
import pandas as pd | |
# Load the models and tokenizers | |
QA_model = AutoModelForQuestionAnswering.from_pretrained("guldasta/xtreme-MLQA.hi.hi") | |
QA_token = AutoTokenizer.from_pretrained("guldasta/xtreme-MLQA.hi.hi") | |
Translation_model = AutoModelForSeq2SeqLM.from_pretrained("guldasta/Helsinki-NLP-opus-mt-mul-en-finetuned-hi-to-en") | |
Translation_token = AutoTokenizer.from_pretrained("guldasta/Helsinki-NLP-opus-mt-mul-en-finetuned-hi-to-en") | |
TokenClass_Model = AutoModelForTokenClassification.from_pretrained("guldasta/roberta-ner-multilingua-HiNER-Org") | |
TokenClass_Token = AutoTokenizer.from_pretrained("guldasta/roberta-ner-multilingua-HiNER-Org") | |
# Define the functions | |
def get_ans(question, context): | |
model_inputs = QA_token(question, context, return_tensors="pt") | |
outputs = QA_model(**model_inputs) | |
start_logits = outputs.start_logits | |
end_logits = outputs.end_logits | |
start_indx = torch.argmax(start_logits) | |
end_indx = torch.argmax(end_logits) | |
answer = QA_token.decode(model_inputs['input_ids'][0][start_indx:end_indx + 1]) | |
return answer | |
def translate_text(text): | |
model_inputs = Translation_token(text, return_tensors="pt") | |
outputs = Translation_model.generate(**model_inputs) | |
translated_text = Translation_token.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
def get_pos(text): | |
inputs = TokenClass_Token(text, return_tensors="pt") | |
outputs = TokenClass_Model(**inputs) | |
logits = outputs.logits | |
predictions = torch.argmax(logits, dim=2) | |
tokens = TokenClass_Token.convert_ids_to_tokens(inputs["input_ids"][0]) | |
predicted_labels = [TokenClass_Model.config.id2label[label.item()] for label in predictions[0]] | |
filtered_tokens = [] | |
filtered_labels = [] | |
for token, label in zip(tokens, predicted_labels): | |
if token not in TokenClass_Token.all_special_tokens: | |
filtered_tokens.append(token) | |
filtered_labels.append(label) | |
df = pd.DataFrame({ | |
"Token": filtered_tokens, | |
"Entity": filtered_labels | |
}) | |
return df | |
# Create Gradio interfaces | |
qa_interface = gr.Interface( | |
fn=get_ans, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Type a paragraph or context here...", label="Paragraph"), | |
gr.Textbox(lines=1, placeholder="Type your question here...", label="Question"), | |
], | |
outputs=gr.Textbox(label="Answer"), | |
title="Question Answering", | |
description="Enter a paragraph and ask a question to get the answer." | |
) | |
translation_interface = gr.Interface( | |
fn=translate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Type your text here...", label="Text to Translate"), | |
outputs=gr.Textbox(label="Translated Text"), | |
title="Text Translation", | |
description="Enter text to translate from Hindi to English." | |
) | |
pos_tag_interface = gr.Interface( | |
fn=get_pos, | |
inputs=gr.Textbox(lines=2, placeholder="Type your text here...", label="Text for POS Tagging"), | |
outputs=gr.Dataframe(headers=["Token", "Entity"]), | |
title="POS Tagging", | |
description="Enter text to get POS tags and named entities." | |
) | |
# Combine all interfaces into a single Gradio app | |
app = gr.TabbedInterface( | |
[qa_interface, translation_interface, pos_tag_interface], | |
["Question Answering", "Translation", "POS Tagging"] | |
) | |
# Launch the app | |
app.launch() | |