Image_to_video / app.py
guardiancc's picture
Update app.py
4b2e644 verified
import spaces
import torch
import gradio as gr
import time
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
# Load model once
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX1.5-5B-I2V",
torch_dtype=torch.bfloat16
)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
@spaces.GPU(duration=120)
def generate_video(image, prompt):
if image is None:
raise gr.Error("Please upload an input image")
if not prompt:
raise gr.Error("Please enter a text prompt")
pipe.to('cuda')
# Load uploaded image
input_image = load_image(image)
# Generate video
video_frames = pipe(
prompt=prompt,
image=input_image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=81,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
# Save to temporary file
output_path = f"output_{int(time.time())}.mp4"
export_to_video(video_frames, output_path, fps=8)
return output_path
with gr.Blocks(title="CogVideoX Image-to-Video") as demo:
gr.Markdown("# 🎥 CogVideoX Image-to-Video Generation")
gr.Markdown("Transform images into videos using AI! Upload an image and enter a description to generate a video.")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input Image", type="filepath")
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the video you want to generate...")
submit_btn = gr.Button("Generate Video")
with gr.Column():
video_output = gr.Video(label="Generated Video")
gr.Examples(examples=examples, inputs=[image_input, prompt_input])
submit_btn.click(
fn=generate_video,
inputs=[image_input, prompt_input],
outputs=video_output,
)
if __name__ == "__main__":
demo.launch()