freddyaboulton HF staff abidlabs HF staff commited on
Commit
ca007eb
·
1 Parent(s): 4c1c8f0

Making it stylistically similar to the other DS demo (#1)

Browse files

- Making it stylistically similar to the other DS demo (209c7e7b2619a0152e33fbf4dc640dfc96fc630f)


Co-authored-by: Abubakar Abid <[email protected]>

Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -67,12 +67,7 @@ unique_country = sorted(X_train["native.country"].unique())
67
 
68
  with gr.Blocks() as demo:
69
  gr.Markdown("""
70
- # Income Classification with XGBoost 💰
71
-
72
- This example shows how to load data from the hugging face hub to train an XGBoost classifier and
73
- demo the predictions with gradio.
74
-
75
- The source is [here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability).
76
  """)
77
  with gr.Row():
78
  with gr.Column():
@@ -135,7 +130,7 @@ with gr.Blocks() as demo:
135
  plot = gr.Plot()
136
  with gr.Row():
137
  predict_btn = gr.Button(value="Predict")
138
- interpret_btn = gr.Button(value="Interpret")
139
  predict_btn.click(
140
  predict,
141
  inputs=[
 
67
 
68
  with gr.Blocks() as demo:
69
  gr.Markdown("""
70
+ **Income Classification with XGBoost 💰**: This demo uses an XGBoost classifier predicts income based on demographic factors, along with Shapley value-based *explanations*. The [source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability).
 
 
 
 
 
71
  """)
72
  with gr.Row():
73
  with gr.Column():
 
130
  plot = gr.Plot()
131
  with gr.Row():
132
  predict_btn = gr.Button(value="Predict")
133
+ interpret_btn = gr.Button(value="Explain")
134
  predict_btn.click(
135
  predict,
136
  inputs=[