File size: 19,706 Bytes
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c83e6
2515553
 
 
 
 
 
 
 
 
 
 
d9c83e6
 
 
2515553
6a9adba
 
 
 
 
 
d9c83e6
6a9adba
2515553
6a9adba
 
2515553
6a9adba
 
2515553
 
6a9adba
d9c83e6
2515553
6a9adba
 
2515553
 
6a9adba
d9c83e6
2515553
6a9adba
 
2515553
 
6a9adba
d9c83e6
 
6a9adba
 
 
d9c83e6
6a9adba
 
 
d9c83e6
6a9adba
 
 
 
 
 
d9c83e6
6a9adba
2515553
 
 
 
 
 
 
 
 
 
 
6a9adba
 
 
 
 
2515553
6a9adba
 
 
2515553
6a9adba
 
 
 
2515553
6a9adba
2515553
6a9adba
2515553
6a9adba
2515553
6a9adba
2515553
6a9adba
 
2515553
 
 
 
 
 
 
 
 
 
 
 
6a9adba
2515553
6a9adba
2515553
6a9adba
2515553
 
6a9adba
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
 
 
 
 
 
 
2515553
 
 
 
 
 
 
 
6a9adba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515553
 
 
 
 
 
 
 
6a9adba
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
 
 
 
 
 
 
 
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
2515553
6a9adba
 
2515553
6a9adba
 
2515553
 
6a9adba
2515553
 
 
 
 
 
 
 
 
 
6a9adba
 
2515553
 
 
 
 
 
 
6a9adba
2515553
 
6a9adba
 
2515553
 
 
 
 
 
 
 
 
6a9adba
 
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c83e6
 
 
 
 
 
 
 
 
 
 
 
2515553
 
 
 
6a9adba
2515553
 
 
 
d9c83e6
2515553
 
d9c83e6
 
 
 
 
 
 
6a9adba
2515553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9adba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import gradio as gr
import subprocess
import os 
import shutil
import tempfile
import torch
import logging
import numpy as np
import re
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('yue_generation.log'),
        logging.StreamHandler()
    ]
)

def optimize_gpu_settings():
    if torch.cuda.is_available():
        # GPU ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์ตœ์ ํ™”
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.benchmark = True
        torch.backends.cudnn.enabled = True
        torch.backends.cudnn.deterministic = False
        
        # L40S์— ์ตœ์ ํ™”๋œ ๋ฉ”๋ชจ๋ฆฌ ์„ค์ •
        torch.cuda.empty_cache()
        torch.cuda.set_device(0)
        
        # CUDA ์ŠคํŠธ๋ฆผ ์ตœ์ ํ™”
        torch.cuda.Stream(0)
        
        # ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น ์ตœ์ ํ™”
        os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
        
        logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
        logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
        
        # L40S ํŠนํ™” ์„ค์ •
        if 'L40S' in torch.cuda.get_device_name(0):
            torch.cuda.set_per_process_memory_fraction(0.95)

def analyze_lyrics(lyrics, repeat_chorus=2):
    lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
    
    sections = {
        'verse': 0,
        'chorus': 0,
        'bridge': 0,
        'total_lines': len(lines)
    }
    
    current_section = None
    section_lines = {
        'verse': [],
        'chorus': [],
        'bridge': []
    }
    last_section = None

    # ๋งˆ์ง€๋ง‰ ์„น์…˜ ํƒœ๊ทธ ์ฐพ๊ธฐ
    for i, line in enumerate(lines):
        if '[verse]' in line.lower() or '[chorus]' in line.lower() or '[bridge]' in line.lower():
            last_section = i

    for i, line in enumerate(lines):
        lower_line = line.lower()
        
        # ์„น์…˜ ํƒœ๊ทธ ์ฒ˜๋ฆฌ
        if '[verse]' in lower_line:
            if current_section:  # ์ด์ „ ์„น์…˜์˜ ๋ผ์ธ๋“ค ์ €์žฅ
                section_lines[current_section].extend(lines[last_section_start:i])
            current_section = 'verse'
            sections['verse'] += 1
            last_section_start = i + 1
            continue
        elif '[chorus]' in lower_line:
            if current_section:
                section_lines[current_section].extend(lines[last_section_start:i])
            current_section = 'chorus'
            sections['chorus'] += 1
            last_section_start = i + 1
            continue
        elif '[bridge]' in lower_line:
            if current_section:
                section_lines[current_section].extend(lines[last_section_start:i])
            current_section = 'bridge'
            sections['bridge'] += 1
            last_section_start = i + 1
            continue

    # ๋งˆ์ง€๋ง‰ ์„น์…˜์˜ ๋ผ์ธ๋“ค ์ถ”๊ฐ€
    if current_section and last_section_start < len(lines):
        section_lines[current_section].extend(lines[last_section_start:])

    # ์ฝ”๋Ÿฌ์Šค ๋ฐ˜๋ณต ์ฒ˜๋ฆฌ
    if sections['chorus'] > 0 and repeat_chorus > 1:
        original_chorus = section_lines['chorus'][:]
        for _ in range(repeat_chorus - 1):
            section_lines['chorus'].extend(original_chorus)

    # ์„น์…˜๋ณ„ ๋ผ์ธ ์ˆ˜ ํ™•์ธ ๋กœ๊น…
    logging.info(f"Section line counts - Verse: {len(section_lines['verse'])}, "
                f"Chorus: {len(section_lines['chorus'])}, "
                f"Bridge: {len(section_lines['bridge'])}")

    return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), len(lines), section_lines

def calculate_generation_params(lyrics):
    sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
    
    # ๊ธฐ๋ณธ ์‹œ๊ฐ„ ๊ณ„์‚ฐ (์ดˆ ๋‹จ์œ„)
    time_per_line = {
        'verse': 4,    # verse๋Š” ํ•œ ์ค„๋‹น 4์ดˆ
        'chorus': 6,   # chorus๋Š” ํ•œ ์ค„๋‹น 6์ดˆ
        'bridge': 5    # bridge๋Š” ํ•œ ์ค„๋‹น 5์ดˆ
    }
    
    # ๊ฐ ์„น์…˜๋ณ„ ์˜ˆ์ƒ ์‹œ๊ฐ„ ๊ณ„์‚ฐ (๋งˆ์ง€๋ง‰ ์„น์…˜ ํฌํ•จ)
    section_durations = {}
    for section_type in ['verse', 'chorus', 'bridge']:
        lines_count = len(section_lines[section_type])
        section_durations[section_type] = lines_count * time_per_line[section_type]
    
    # ์ „์ฒด ์‹œ๊ฐ„ ๊ณ„์‚ฐ (์—ฌ์œ  ์‹œ๊ฐ„ ์ถ”๊ฐ€)
    total_duration = sum(duration for duration in section_durations.values())
    total_duration = max(60, int(total_duration * 1.2))  # 20% ์—ฌ์œ  ์‹œ๊ฐ„ ์ถ”๊ฐ€
    
    # ํ† ํฐ ๊ณ„์‚ฐ (๋งˆ์ง€๋ง‰ ์„น์…˜์„ ์œ„ํ•œ ์ถ”๊ฐ€ ํ† ํฐ)
    base_tokens = 3000
    tokens_per_line = 200
    extra_tokens = 1000  # ๋งˆ์ง€๋ง‰ ์„น์…˜์„ ์œ„ํ•œ ์ถ”๊ฐ€ ํ† ํฐ
    
    total_tokens = base_tokens + (total_lines * tokens_per_line) + extra_tokens
    
    # ์„ธ๊ทธ๋จผํŠธ ์ˆ˜ ๊ณ„์‚ฐ (๋งˆ์ง€๋ง‰ ์„น์…˜์„ ์œ„ํ•œ ์ถ”๊ฐ€ ์„ธ๊ทธ๋จผํŠธ)
    if sections['chorus'] > 0:
        num_segments = 4  # ์ฝ”๋Ÿฌ์Šค๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ 4๊ฐœ ์„ธ๊ทธ๋จผํŠธ
    else:
        num_segments = 3  # ์ฝ”๋Ÿฌ์Šค๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ 3๊ฐœ ์„ธ๊ทธ๋จผํŠธ
    
    # ํ† ํฐ ์ˆ˜ ์ œํ•œ (๋” ํฐ ์ œํ•œ)
    max_tokens = min(12000, total_tokens)  # ์ตœ๋Œ€ ํ† ํฐ ์ˆ˜ ์ฆ๊ฐ€
    
    return {
        'max_tokens': max_tokens,
        'num_segments': num_segments,
        'sections': sections,
        'section_lines': section_lines,
        'estimated_duration': total_duration,
        'section_durations': section_durations,
        'has_chorus': sections['chorus'] > 0
    }

def detect_and_select_model(text):
    if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
        return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
    elif re.search(r'[\u4e00-\u9fff]', text):
        return "m-a-p/YuE-s1-7B-anneal-zh-cot"
    elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
        return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
    else:
        return "m-a-p/YuE-s1-7B-anneal-en-cot"

def install_flash_attn():
    try:
        if not torch.cuda.is_available():
            logging.warning("GPU not available, skipping flash-attn installation")
            return False
            
        cuda_version = torch.version.cuda
        if cuda_version is None:
            logging.warning("CUDA not available, skipping flash-attn installation")
            return False
            
        logging.info(f"Detected CUDA version: {cuda_version}")
        
        try:
            import flash_attn
            logging.info("flash-attn already installed")
            return True
        except ImportError:
            logging.info("Installing flash-attn...")
            
        subprocess.run(
            ["pip", "install", "flash-attn", "--no-build-isolation"],
            check=True,
            capture_output=True
        )
        logging.info("flash-attn installed successfully!")
        return True
            
    except Exception as e:
        logging.warning(f"Failed to install flash-attn: {e}")
        return False

def initialize_system():
    optimize_gpu_settings()
    
    with ThreadPoolExecutor(max_workers=4) as executor:
        futures = []
        
        futures.append(executor.submit(install_flash_attn))
        
        from huggingface_hub import snapshot_download
        
        folder_path = './inference/xcodec_mini_infer'
        os.makedirs(folder_path, exist_ok=True)
        logging.info(f"Created folder at: {folder_path}")

        futures.append(executor.submit(
            snapshot_download,
            repo_id="m-a-p/xcodec_mini_infer",
            local_dir="./inference/xcodec_mini_infer",
            resume_download=True
        ))
        
        for future in futures:
            future.result()

    try:
        os.chdir("./inference")
        logging.info(f"Working directory changed to: {os.getcwd()}")
    except FileNotFoundError as e:
        logging.error(f"Directory error: {e}")
        raise

@lru_cache(maxsize=100)
def get_cached_file_path(content_hash, prefix):
    return create_temp_file(content_hash, prefix)

def empty_output_folder(output_dir):
    try:
        shutil.rmtree(output_dir)
        os.makedirs(output_dir)
        logging.info(f"Output folder cleaned: {output_dir}")
    except Exception as e:
        logging.error(f"Error cleaning output folder: {e}")
        raise

def create_temp_file(content, prefix, suffix=".txt"):
    temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
    content = content.strip() + "\n\n"
    content = content.replace("\r\n", "\n").replace("\r", "\n")
    temp_file.write(content)
    temp_file.close()
    logging.debug(f"Temporary file created: {temp_file.name}")
    return temp_file.name

def get_last_mp3_file(output_dir):
    mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
    if not mp3_files:
        logging.warning("No MP3 files found")
        return None
    
    mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
    mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
    return mp3_files_with_path[0]

def get_audio_duration(file_path):
    try:
        import librosa
        duration = librosa.get_duration(path=file_path)
        return duration
    except Exception as e:
        logging.error(f"Failed to get audio duration: {e}")
        return None

def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
    genre_txt_path = None
    lyrics_txt_path = None
    
    try:
        model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
        logging.info(f"Selected model: {model_path}")
        logging.info(f"Lyrics analysis: {params}")
        
        has_chorus = params['sections']['chorus'] > 0
        estimated_duration = params.get('estimated_duration', 90)


        # ์„ธ๊ทธ๋จผํŠธ ๋ฐ ํ† ํฐ ์ˆ˜ ์„ค์ •
        if has_chorus:
            actual_max_tokens = min(12000, int(config['max_tokens'] * 1.3))  # 30% ๋” ๋งŽ์€ ํ† ํฐ
            actual_num_segments = min(5, params['num_segments'] + 2)  # ์ถ”๊ฐ€ ์„ธ๊ทธ๋จผํŠธ
        else:
            actual_max_tokens = min(10000, int(config['max_tokens'] * 1.2))
            actual_num_segments = min(4, params['num_segments'] + 1)
        


        logging.info(f"Estimated duration: {estimated_duration} seconds")
        logging.info(f"Has chorus sections: {has_chorus}")
        logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
        
        genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
        lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
        
        output_dir = "./output"
        os.makedirs(output_dir, exist_ok=True)
        empty_output_folder(output_dir)

        # ์ˆ˜์ •๋œ command - ์ง€์›๋˜์ง€ ์•Š๋Š” ์ธ์ˆ˜ ์ œ๊ฑฐ
        command = [
            "python", "infer.py",
            "--stage1_model", model_path,
            "--stage2_model", "m-a-p/YuE-s2-1B-general",
            "--genre_txt", genre_txt_path,
            "--lyrics_txt", lyrics_txt_path,
            "--run_n_segments", str(actual_num_segments),
            "--stage2_batch_size", "16",
            "--output_dir", output_dir,
            "--cuda_idx", "0",
            "--max_new_tokens", str(actual_max_tokens),
            "--disable_offload_model"  # GPU ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด ์ถ”๊ฐ€
        ]

        env = os.environ.copy()
        if torch.cuda.is_available():
            env.update({
                "CUDA_VISIBLE_DEVICES": "0",
                "CUDA_HOME": "/usr/local/cuda",
                "PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
                "LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
                "PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
                "CUDA_LAUNCH_BLOCKING": "0"
            })

        # transformers ์บ์‹œ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ์ฒ˜๋ฆฌ
        try:
            from transformers.utils import move_cache
            move_cache()
        except Exception as e:
            logging.warning(f"Cache migration warning (non-critical): {e}")

        process = subprocess.run(
            command,
            env=env,
            check=False,
            capture_output=True,
            text=True
        )

        logging.info(f"Command output: {process.stdout}")
        if process.stderr:
            logging.error(f"Command error: {process.stderr}")

        if process.returncode != 0:
            logging.error(f"Command failed with return code: {process.returncode}")
            logging.error(f"Command: {' '.join(command)}")
            raise RuntimeError(f"Inference failed: {process.stderr}")

        last_mp3 = get_last_mp3_file(output_dir)
        if last_mp3:
            try:
                duration = get_audio_duration(last_mp3)
                logging.info(f"Generated audio file: {last_mp3}")
                if duration:
                    logging.info(f"Audio duration: {duration:.2f} seconds")
                    logging.info(f"Expected duration: {estimated_duration} seconds")
                    
                    if duration < estimated_duration * 0.8:
                        logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
            except Exception as e:
                logging.warning(f"Failed to get audio duration: {e}")
            return last_mp3
        else:
            logging.warning("No output audio file generated")
            return None

    except Exception as e:
        logging.error(f"Inference error: {e}")
        raise
    finally:
        for path in [genre_txt_path, lyrics_txt_path]:
            if path and os.path.exists(path):
                try:
                    os.remove(path)
                    logging.debug(f"Removed temporary file: {path}")
                except Exception as e:
                    logging.warning(f"Failed to remove temporary file {path}: {e}")

def optimize_model_selection(lyrics, genre):
    model_path = detect_and_select_model(lyrics)
    params = calculate_generation_params(lyrics)
    
    has_chorus = params['sections']['chorus'] > 0
    tokens_per_segment = params['max_tokens'] // params['num_segments']
    
    model_config = {
        "m-a-p/YuE-s1-7B-anneal-en-cot": {
            "max_tokens": params['max_tokens'],
            "temperature": 0.8,
            "batch_size": 16,
            "num_segments": params['num_segments'],
            "estimated_duration": params['estimated_duration']
        },
        "m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
            "max_tokens": params['max_tokens'],
            "temperature": 0.7,
            "batch_size": 16,
            "num_segments": params['num_segments'],
            "estimated_duration": params['estimated_duration']
        },
        "m-a-p/YuE-s1-7B-anneal-zh-cot": {
            "max_tokens": params['max_tokens'],
            "temperature": 0.7,
            "batch_size": 16,
            "num_segments": params['num_segments'],
            "estimated_duration": params['estimated_duration']
        }
    }
    
    if has_chorus:
        for config in model_config.values():
            config['max_tokens'] = int(config['max_tokens'] * 1.5)
    
    return model_path, model_config[model_path], params

def main():
    with gr.Blocks() as demo:
        with gr.Column():
            gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
            
            with gr.Row():
                with gr.Column():
                    genre_txt = gr.Textbox(
                        label="Genre",
                        placeholder="Enter music genre and style descriptions..."
                    )
                    lyrics_txt = gr.Textbox(
                        label="Lyrics (Supports English, Korean, Japanese, Chinese)",
                        placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...",
                        lines=10
                    )
                    
                with gr.Column():
                    num_segments = gr.Number(
                        label="Number of Song Segments (Auto-adjusted based on lyrics)",
                        value=2,
                        minimum=1,
                        maximum=4,
                        step=1,
                        interactive=False
                    )
                    max_new_tokens = gr.Slider(
                        label="Max New Tokens (Auto-adjusted based on lyrics)",
                        minimum=500,
                        maximum=32000,
                        step=500,
                        value=4000,
                        interactive=False
                    )
                    with gr.Row():
                        duration_info = gr.Label(label="Estimated Duration")
                        sections_info = gr.Label(label="Section Information")
                    submit_btn = gr.Button("Generate Music", variant="primary")
                    music_out = gr.Audio(label="Generated Audio")

            gr.Examples(
                examples=[
                    [
                        "female blues airy vocal bright vocal piano sad romantic guitar jazz",
                        """[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice

[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow

[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice

[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow"""
                    ],
                    [
                        "K-pop bright energetic synth dance electronic",
                        """[verse]
์–ธ์  ๊ฐ€ ๋งˆ์ฃผํ•œ ๋ˆˆ๋น› ์†์—์„œ

[chorus]
๋‹ค์‹œ ํ•œ ๋ฒˆ ๋‚ด๊ฒŒ ๋งํ•ด์ค˜

[verse]
์–ด๋‘์šด ๋ฐค์„ ์ง€๋‚  ๋•Œ๋งˆ๋‹ค

[chorus]
๋‹ค์‹œ ํ•œ ๋ฒˆ ๋‚ด๊ฒŒ ๋งํ•ด์ค˜
"""
                    ]
                ],
                inputs=[genre_txt, lyrics_txt]
            )

        initialize_system()

        def update_info(lyrics):
            if not lyrics:
                return "No lyrics entered", "No sections detected"
            params = calculate_generation_params(lyrics)
            duration = params['estimated_duration']
            sections = params['sections']
            return (
                f"Estimated duration: {duration:.1f} seconds",
                f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
            )

        lyrics_txt.change(
            fn=update_info,
            inputs=[lyrics_txt],
            outputs=[duration_info, sections_info]
        )
        
        submit_btn.click(
            fn=infer,
            inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
            outputs=[music_out]
        )

        return demo

if __name__ == "__main__":
    demo = main()
    demo.queue(max_size=20).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_api=True,
        show_error=True,
        max_threads=8
    )