Any3D / app.py
ginipick's picture
Update app.py
7e8ca15 verified
raw
history blame
9.32 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
# ๊ธฐ๋ณธ ์„ค์ •
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# CUDA ์ดˆ๊ธฐํ™” ํ•จ์ˆ˜
def init_cuda():
try:
if torch.cuda.is_available():
device = torch.device('cuda')
print("CUDA ์ดˆ๊ธฐํ™” ์„ฑ๊ณต")
else:
device = torch.device('cpu')
print("CUDA๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์–ด CPU๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค")
return device
except Exception as e:
print(f"CUDA ์ดˆ๊ธฐํ™” ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
return torch.device('cpu')
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
"""
์ž…๋ ฅ ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
"""
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
"""
์ƒํƒœ ์ •๋ณด ํŒจํ‚น
"""
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
"""
์ƒํƒœ ์ •๋ณด ์–ธํŒจํ‚น
"""
device = init_cuda()
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device=device)
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device=device)
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device=device)
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device=device)
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device=device)
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device=device),
faces=torch.tensor(state['mesh']['faces'], device=device),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
"""
์ด๋ฏธ์ง€๋ฅผ 3D ๋ชจ๋ธ๋กœ ๋ณ€ํ™˜
"""
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = pipeline.run(
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
except Exception as e:
print(f"3D ๋ณ€ํ™˜ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
return None, None
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
"""
3D ๋ชจ๋ธ์—์„œ GLB ํŒŒ์ผ ์ถ”์ถœ
"""
try:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
except Exception as e:
print(f"GLB ์ถ”์ถœ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
return None, None
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
## Roblox3D""")
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# ์˜ˆ์ œ ์ด๋ฏธ์ง€ ์„ค์ •
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=64,
)
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ ์„ค์ •
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
# ๋ฉ”์ธ ์‹คํ–‰๋ถ€
if __name__ == "__main__":
try:
device = init_cuda()
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.to(device)
# rembg ์‚ฌ์ „ ๋กœ๋“œ ์‹œ๋„
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except Exception as e:
print(f"์‚ฌ์ „ ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
# ๊ณต์œ  GPU ํ™˜๊ฒฝ์„ ์œ„ํ•œ ์„ค์ •์œผ๋กœ ๋ฐ๋ชจ ์‹คํ–‰
demo.queue(max_size=10).launch(share=True)
except Exception as e:
print(f"์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹œ์ž‘ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")